Diffusion length determination in solar grade silicon by room temperature photoluminescence measurements

被引:2
作者
Sayad, Y. [1 ]
Blanc, D. [1 ]
Kaminski, A. [1 ]
Bremond, G. [1 ]
Lemiti, M. [1 ]
机构
[1] Univ Lyon, INSA Lyon, Inst Nanotechnol Lyon, CNRS,INL UMR5270, F-69621 Villeurbanne, France
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 3 | 2011年 / 8卷 / 03期
关键词
photoluminescence; diffusion length; solar grade silicon; photovoltaics; DEFECTS;
D O I
10.1002/pssc.201000216
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Minority carrier lifetime (tau) and diffusion length (L) are the most important electrical parameters to qualify silicon for photovoltaic applications. Amongst the available techniques for measuring this parameter, photoluminescence has regained interest as it can be done on raw material as well as on completed solar cells in a non destructive way. Although very efficient mapping systems can provide fast information on multicrystalline samples most quantitative measurements require a calibration that is normally achieved by correlation with other techniques like photoconductance decay. In this paper, we show that L may be evaluated in a simple way from the dependence of the room temperature photoluminescence signal on the excitation beam intensity using an analytical model based on 1D carrier diffusion. Using this 1D model, the diffusion length was calculated in photovoltaic grade silicon materials without calibration by external technique. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:808 / 811
页数:4
相关论文
共 14 条
[1]   Effect of P-induced gettering on extended defects in n-type multicrystalline silicon [J].
Acciarri, M. ;
Binetti, S. ;
Le Donne, A. ;
Marchionna, S. ;
Vimercati, M. ;
Libal, J. ;
Kopecek, R. ;
Wambach, K. .
PROGRESS IN PHOTOVOLTAICS, 2007, 15 (05) :375-386
[2]   Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images [J].
Giesecke, J. A. ;
Kasemann, M. ;
Warta, W. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
[3]   Scanning room-temperature photoluminescence in polycrystalline silicon [J].
Koshka, Y ;
Ostapenko, S ;
Tarasov, I ;
McHugo, S ;
Kalejs, JP .
APPLIED PHYSICS LETTERS, 1999, 74 (11) :1555-1557
[4]  
Masarotto L, 2002, MATER SCI FORUM, V433-4, P349, DOI 10.4028/www.scientific.net/MSF.433-436.349
[5]   Room temperature scanning photoluminescence for mapping the lifetime and the doping density in epitaxial layers [J].
Nuban, MF ;
Krawczyk, SK ;
Bejar, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 44 (1-3) :125-129
[6]   Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements [J].
Sayad, Y. ;
Amtablian, S. ;
Kaminski, A. ;
Blanc, D. ;
Carroy, P. ;
Nouiri, A. ;
Lemiti, M. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 165 (1-2) :67-70
[7]   Photoluminescence analysis of intra-grain defects in cast-grown polycrystalline silicon wafers [J].
Sugimoto, H. ;
Tajima, M. ;
Eguchi, T. ;
Yamaga, I. ;
Saitoh, T. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (1-3) :102-106
[9]   Photoluminescence due to oxygen precipitates distinguished from the D lines in annealed Si [J].
Tajima, M ;
Tokita, M ;
Warashina, M .
ICDS-18 - PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON DEFECTS IN SEMICONDUCTORS, PTS 1-4, 1995, 196- :1749-1753
[10]   On the electronic improvement of multi-crystalline silicon via gettering and hydrogenation [J].
Tan, J. ;
Cuevas, A. ;
Macdonald, D. ;
Trupke, T. ;
Bardos, R. ;
Roth, K. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (02) :129-134