Sparsity-promoting Bayesian inversion

被引:44
作者
Kolehmainen, V. [1 ]
Lassas, M. [2 ]
Niinimaki, K. [1 ]
Siltanen, S. [2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[2] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
基金
芬兰科学院;
关键词
X-RAY TOMOGRAPHY; TIKHONOV REGULARIZATION; STATISTICAL INVERSION; CONVERGENCE-RATES; GRADIENT-METHOD; NOISE REMOVAL; RECONSTRUCTION; RECOVERY; RADIOGRAPHS; PROJECTION;
D O I
10.1088/0266-5611/28/2/025005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A computational Bayesian inversion model is demonstrated. It is discretization invariant, describes prior information using function spaces with a wavelet basis and promotes reconstructions that are sparse in the wavelet transform domain. The method makes use of the Besov space prior with p = 1, q = 1 and s = 1, which is related to the total variation prior. Numerical evidence is presented in the context of a one-dimensional deconvolution task, suggesting that edge-preserving and noise-robust reconstructions can be achieved consistently at various resolutions.
引用
收藏
页数:28
相关论文
共 67 条
[41]   LINEAR INVERSE PROBLEMS FOR GENERALIZED RANDOM-VARIABLES [J].
LEHTINEN, MS ;
PAIVARINTA, L ;
SOMERSALO, E .
INVERSE PROBLEMS, 1989, 5 (04) :599-612
[42]  
Lehtinen MS, 1988, THEORY APPL INVERSE
[43]  
Liu J. S., 2004, MONTE CARLO STRATEGI
[44]   Convergence rates and source conditions for Tikhonov regularization with sparsity constraints [J].
Lorenz, D. A. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (05) :463-478
[45]   Sparse recovery by the standard Tikhonov method [J].
Lu, Shuai ;
Pereverzev, Sergei V. .
NUMERISCHE MATHEMATIK, 2009, 112 (03) :403-424
[46]  
Matinverno A, 2004, GEOPHYSICS, V69, P1005
[47]   ON THE IMPLEMENTATION OF A PRIMAL-DUAL INTERIOR POINT METHOD [J].
Mehrotra, Sanjay .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) :575-601
[48]  
Meyer Y., 2001, OSCILLATING PATTERNS, V22
[49]   MONTE-CARLO SAMPLING OF SOLUTIONS TO INVERSE PROBLEMS [J].
MOSEGAARD, K ;
TARANTOLA, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B7) :12431-12447
[50]   Prior modelling and posterior sampling in impedance imaging [J].
Nicholls, GK ;
Fox, C .
BAYESIAN INFERENCE FOR INVERSE PROBLEMS, 1998, 3459 :116-127