Consistency and normality of Huber-Dutter estimators for partial linear model
被引:5
|
作者:
Tong XingWei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Tong XingWei
[1
]
Cui HengJian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Cui HengJian
[1
]
Yu Peng
论文数: 0引用数: 0
h-index: 0
机构:
Natl Geomat Ctr China, Beijing 100873, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Yu Peng
[2
]
机构:
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Natl Geomat Ctr China, Beijing 100873, Peoples R China
来源:
SCIENCE IN CHINA SERIES A-MATHEMATICS
|
2008年
/
51卷
/
10期
基金:
中国国家自然科学基金;
关键词:
Huber-Dutter estimator;
partial linear model;
B-spline function;
D O I:
10.1007/s11425-008-0028-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For partial linear model Y = X-tau beta(0) + g(0)(T) + epsilon with unknown beta(0)is an element of R-d and an unknown smooth function g(0), this paper considers the Huber-Dutter estimators of beta(0), scale sigma for the errors and the function g(0) approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of beta(0) and sigma are shown to be asymptotically normal with the rate of convergence n(-1/2) and the B-spline Huber-Dutter estimator of g(0) achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of beta(0) is competitive with its M-estimator without scale parameter and the ordinary least square estimator.
机构:
Chongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R ChinaChongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China