Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics

被引:136
作者
Dercle, Laurent [1 ,2 ]
Fronheiser, Matthew [3 ]
Lu, Lin [1 ]
Du, Shuyan [3 ]
Hayes, Wendy [3 ]
Leung, David K. [3 ]
Roy, Amit [4 ]
Wilkerson, Julia [5 ]
Guo, Pingzhen [1 ]
Fojo, Antonio T. [6 ,7 ]
Schwartz, Lawrence H. [1 ]
Zhao, Binsheng [1 ]
机构
[1] Columbia Univ, Med Ctr, New York Presbyterian Hosp, Dept Radiol, New York, NY USA
[2] Univ Paris Saclay, Gustave Roussy, Villejuif, France
[3] Bristol Myers Squibb, Translat Med, Princeton, NJ USA
[4] Bristol Myers Squibb, Clin Pharmacol & Pharmacometr, Princeton, NJ USA
[5] NCI, NIH, Bethesda, MD 20892 USA
[6] Columbia Univ, New York Presbyterian Hosp, New York, NY USA
[7] James J Peters VA Med Ctr, New York, NY USA
关键词
FACTOR RECEPTOR MUTATION; COMPUTED-TOMOGRAPHY SCANS; VOLUMETRIC MEASUREMENT; RESPONSE EVALUATION; CT CHARACTERISTICS; TUMOR MEASUREMENTS; RADIATION-THERAPY; TEXTURE ANALYSIS; FEATURES; EGFR;
D O I
10.1158/1078-0432.CCR-19-2942
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non-small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), Check-Mate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55-1.00); docetaxel, 0.67 (0.37-0.96); and gefitinib, 0.82 (0.53-0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival.
引用
收藏
页码:2151 / 2162
页数:12
相关论文
共 53 条
[1]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[2]   Texture analysis of aggressive and nonaggressive lung tumor CE CT images [J].
Al-Kadi, Omar S. ;
Watson, D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (07) :1822-1830
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab [J].
Chang, Ken ;
Zhang, Biqi ;
Guo, Xiaotao ;
Zong, Min ;
Rahman, Rifaquat ;
Sanchez, David ;
Winder, Nicolette ;
Reardon, David A. ;
Zhao, Binsheng ;
Wen, Patrick Y. ;
Huang, Raymond Y. .
NEURO-ONCOLOGY, 2016, 18 (12) :1680-1687
[5]   Advanced Adenocarcinoma of the Lung: Comparison of CT Characteristics of Patients with Anaplastic Lymphoma Kinase Gene Rearrangement and Those with Epidermal Growth Factor Receptor Mutation [J].
Choi, Chang-Min ;
Kim, Mi Young ;
Hwang, Hye Jeon ;
Lee, Jung Bok ;
Kim, Woo Sung .
RADIOLOGY, 2015, 275 (01) :272-279
[6]   Semiautomated Volumetric Measurement on Postcontrast MR Imaging for Analysis of Recurrent and Residual Disease in Glioblastoma Multiforme [J].
Chow, D. S. ;
Qi, J. ;
Guo, X. ;
Miloushev, V. Z. ;
Iwamoto, F. M. ;
Bruce, J. N. ;
Lassman, A. B. ;
Schwartz, L. H. ;
Lignelli, A. ;
Zhao, B. ;
Filippi, C. G. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (03) :498-503
[7]   Radiomic phenotype features predict pathological response in non-small cell lung cancer [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Narayan, Vivek ;
Hou, Ying ;
Grossmann, Patrick ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) :480-486
[8]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[9]   Lung Texture in Serial Thoracic Computed Tomography Scans: Correlation of Radiomics-based Features With Radiation Therapy Dose and Radiation Pneumonitis Development [J].
Cunliffe, Alexandra ;
Armato, Samuel G., III ;
Castillo, Richard ;
Ngoc Pham ;
Guerrero, Thomas ;
Al-Hallaq, Hania A. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 91 (05) :1048-1056
[10]  
Dercle L, 2020, JNCI J NATL CANC I