pH-Responsive Nanocarriers in Cancer Therapy

被引:122
作者
AlSawaftah, Nour M. [1 ,2 ]
Awad, Nahid S. [1 ]
Pitt, William G. [3 ]
Husseini, Ghaleb A. [1 ,2 ]
机构
[1] Amer Univ Sharjah, Coll Engn, Dept Chem Engn, POB 26666, Sharjah, U Arab Emirates
[2] Amer Univ Sharjah, Coll Arts & Sci, Mat Sci & Engn Program, POB 26666, Sharjah, U Arab Emirates
[3] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA
关键词
nanoparticles; pH; drug delivery; cancer; DRUG-DELIVERY; POLYMERIC MICELLES; CO-DELIVERY; GOLD NANOPARTICLES; LIPOSOMES; CHEMOTHERAPY; DOXORUBICIN; SYSTEMS;
D O I
10.3390/polym14050936
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH. The intracellular pH of solid tumors is maintained below the extracellular pH. Thus, pH-sensitive nanoparticles are highly efficient in delivering drugs to tumors compared to conventional nanoparticles. This review provides a survey of the different strategies used to develop pH-sensitive nanoparticles used in cancer therapy.
引用
收藏
页数:21
相关论文
共 88 条
[11]   Self-Assembly of Partially Alkylated Dextran-graft-poly[(2-dimethylamino)ethyl methacrylate] Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties [J].
Chandel, Arvind K. Singh ;
Nutan, Bhingaradiya ;
Raval, Ishan H. ;
Jewrajka, Suresh K. .
BIOMACROMOLECULES, 2018, 19 (04) :1142-1153
[12]   Towards Sustainable Rice Production in Asia: The Role of Climatic Factors [J].
Chandio, Abbas Ali ;
Gokmenoglu, Korhan K. ;
Ahmad, Munir ;
Jiang, Yuansheng .
EARTH SYSTEMS AND ENVIRONMENT, 2022, 6 (01) :1-14
[13]  
Choi J.H., 2020, Stimuli-responsive nanomedicine, P39, DOI [10.1201/9780429295294-2, DOI 10.1201/9780429295294-2]
[14]   Nanoparticles in drug delivery: Past, present and future [J].
Couvreur, P. .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) :21-23
[15]   To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery [J].
Danhier, Fabienne ;
Feron, Olivier ;
Preat, Veronique .
JOURNAL OF CONTROLLED RELEASE, 2010, 148 (02) :135-146
[16]   pH-Responsive Polymer Nanoparticles for Drug Delivery [J].
Deirram, Nayeleh ;
Zhang, Changhe ;
Kermaniyan, Sarah S. ;
Johnston, Angus P. R. ;
Such, Georgina K. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
[17]   Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions [J].
Dhakshinamoorthy, Amarajothi ;
Alvaro, Mercedes ;
Corma, Avelino ;
Garcia, Hermenegildo .
DALTON TRANSACTIONS, 2011, 40 (24) :6344-6360
[18]   Biodegradable pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting [J].
Dominski, Adrian ;
Krawczyk, Monika ;
Konieczny, Tomasz ;
Kasprow, Maciej ;
Forys, Aleksander ;
Pastuch-Gawolek, Gabriela ;
Kurcok, Piotr .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2020, 154 :317-329
[19]   Stimuli-responsive nanoparticles for targeting the tumor microenvironment [J].
Du, Jinzhi ;
Lane, Lucas A. ;
Nie, Shuming .
JOURNAL OF CONTROLLED RELEASE, 2015, 219 :205-214
[20]   A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy [J].
Duan, Fei ;
Feng, Xiaochen ;
Yang, Xinjian ;
Sun, Wentong ;
Jin, Yi ;
Liu, Huifang ;
Ge, Kun ;
Li, Zhenhua ;
Zhang, Jinchao .
BIOMATERIALS, 2017, 122 :23-33