Automated Epileptic Seizure Detection in EEGs Using Increment Entropy

被引:0
|
作者
Liu, Xiaofeng [1 ]
Jiang, Aimin
Xu, Ning
机构
[1] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
来源
2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE) | 2017年
基金
中国国家自然科学基金;
关键词
ARTIFICIAL NEURAL-NETWORKS; APPROXIMATE ENTROPY; PERMUTATION ENTROPY; TIME-SERIES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an automated method for seizure detection in EEGs using an increment entropy (IncrEn) and support vector machines (SVMs). The IncrEn is a measure of the complexity of time series, which characterizes both the permutation of values and the temporal order of values. The IncrEn is used to extract features of epileptic EEGs and normal EEGs. The SVMs are employed to classify seizure EEGs from non-seizure ones. The maximum accuracy achieves 97.32%. The maximum sensitivity and the maximum specificity are 95.34% and 99.30%, respectively. The results indicate our approach using the IncrEn and SVMs is an effective tool to detect EEG seizure.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    Song, Yuedong
    Crowcroft, Jon
    Zhang, Jiaxiang
    JOURNAL OF NEUROSCIENCE METHODS, 2012, 210 (02) : 132 - 146
  • [2] Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy
    Mohammadpoory, Zeynab
    Nasrolahzadeh, Manda
    Haddadnia, Javad
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 50 : 202 - 208
  • [3] Epileptic seizure detection in EEG using improved entropy
    Gini, Arumai Thangam Phareson
    Queen, Manuel Packiaselvam Flower
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 33 (04) : 325 - 345
  • [4] Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm
    Zhu, Guohun
    Li, Yan
    Wen, Peng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (02) : 64 - 75
  • [5] Detection of epileptic seizure based on entropy analysis of short-term EEG
    Li, Peng
    Karmakar, Chandan
    Yearwood, John
    Venkatesh, Svetha
    Palaniswami, Marimuthu
    Liu, Changchun
    PLOS ONE, 2018, 13 (03):
  • [6] Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity
    Zhu, Xinzhong
    Xu, Huiying
    Zhao, Jianmin
    Tian, Jie
    COMPLEXITY, 2017,
  • [7] The detection of epileptic seizure signals based on fuzzy entropy
    Xiang, Jie
    Li, Conggai
    Li, Haifang
    Cao, Rui
    Wang, Bin
    Han, Xiaohong
    Chen, Junjie
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 18 - 25
  • [8] Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy
    Sukriti
    Chakraborty, Monisha
    Mitra, Debjani
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [9] Epileptic Seizure Detection With Permutation Fuzzy Entropy Using Robust Machine Learning Techniques
    Hussain, Waqar
    Wang, Bin
    Niu, Yan
    Gao, Yuan
    Wang, Xin
    Sun, Jie
    Zhan, Qionghui
    Cao, Rui
    Mengni, Zhou
    Iqbal, Muhammad Shahid
    Xiang, Jie
    IEEE ACCESS, 2019, 7 : 182238 - 182258
  • [10] Entropy parameter optimization for epileptic seizure detection: A parallel approach
    Glory, H. Anila
    Sriram, V. S. Shankar
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2025, 29 (01) : 15 - 31