Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification

被引:125
作者
Li, Jiayi [1 ,2 ]
Zhang, Hongyan [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 10期
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral imagery; multitask learning; sparse representation; COLLABORATIVE REPRESENTATION; SUPPORT; PROFILES;
D O I
10.1109/TGRS.2015.2421638
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers.
引用
收藏
页码:5338 / 5351
页数:14
相关论文
共 51 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Bennett K. P., 2000, P ICML, P57
[3]  
Boyd S.P, 2004, Convex optimization, DOI [DOI 10.1017/CBO9780511804441, 10.1017/CBO9780511804441]
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   Accelerated Gradient Method for Multi-Task Sparse Learning Problem [J].
Chen, Xi ;
Pan, Weike ;
Kwok, James T. ;
Carbonell, Jaime G. .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :746-+
[7]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[8]   Sparse Representation for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :629-640
[9]  
Crisp DJ, 2000, ADV NEUR IN, V12, P244
[10]   Extended profiles with morphological attribute filters for the analysis of hyperspectral data [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) :5975-5991