Detecting Hidden Objects Using Efficient Spatio-Temporal Knowledge Representation

被引:4
作者
Olszewska, Joanna Isabelle [1 ]
机构
[1] Univ Gloucestershire, Cheltenham, Glos, England
来源
AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2016 | 2017年 / 10162卷
关键词
Surveillance application; Visual scene analysis; Automated scene understanding; Knowledge representation; Spatiotemporal visual ontology; Symbolic reasoning; Computer vision; Pattern recognition; VISUAL SURVEILLANCE; ONTOLOGY; TRACKING; VIDEO; RECOGNITION; CONTEXT;
D O I
10.1007/978-3-319-53354-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting visible as well as invisible objects of interest in real-world scenes is crucial in new-generation video-surveillance. For this purpose, we design a fully intelligent system incorporating semantic, symbolic, and grounded information. In particular, we conceptualize temporal representations we use together with spatial and visual information in our multi-view tracking system. It uses them for automated reasoning and induction of knowledge about the multiple views of the studied scene, in order to automatically detect salient or hidden objects of interest. Tests on standard datasets demonstrated the efficiency and accuracy of our proposed approach.
引用
收藏
页码:302 / 313
页数:12
相关论文
共 50 条
  • [41] Spatio-Temporal Disocclusion Filling Using Novel Sprite Cells
    Cheung, Chi Ho
    Ngan, King Ngi
    Sheng, Lu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (06) : 1376 - 1391
  • [42] Using multiple spatio-temporal features to estimate video quality
    Freitas, Pedro Garcia
    Akamine, Welington Y. L.
    Farias, Mylene C. Q.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 64 : 1 - 10
  • [43] Face Detection in Video Using Local Spatio-temporal Representations
    Martinez-Diaz, Yoanna
    Hernandez, Noslen
    Mendez-Vazquez, Heydi
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 860 - 867
  • [44] Action Recognition Based on Efficient Deep Feature Learning in the Spatio-Temporal Domain
    Husain, Farzad
    Dellen, Babette
    Torras, Carme
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02): : 984 - 991
  • [45] Multi-scale pedestrian intent prediction using 3D joint information as spatio-temporal representation
    Ahmed, Sarfraz
    Al Bazi, Ammar
    Saha, Chitta
    Rajbhandari, Sujan
    Huda, M. Nazmul
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [46] A Fast Algorithm for Tracking Moving Objects Based on Spatio-Temporal Video Segmentation and Cluster Ensembles
    Monma, Yumi
    Silva, Luciano S.
    Scharcanski, Jacob
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 29 - 34
  • [47] Spatio-temporal representation learning enhanced speech emotion with multi-head attention mechanisms
    Chen, Zengzhao
    Lin, Mengting
    Wang, Zhifeng
    Zheng, Qiuyu
    Liu, Chuan
    KNOWLEDGE-BASED SYSTEMS, 2023, 281
  • [48] Scalable Spatio-Temporal Reasoning of Sequential Events using Spark Framework
    Uma, V.
    Jayanthi, G.
    2018 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2018, : 47 - 51
  • [49] Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features
    Hashemzadeh, Mandi
    Zademehdi, Alireza
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 130 : 60 - 78
  • [50] Measurement of traffic parameters in image sequence using spatio-temporal information
    Lee, Daeho
    Park, Youngtae
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (11)