Detecting Hidden Objects Using Efficient Spatio-Temporal Knowledge Representation

被引:4
|
作者
Olszewska, Joanna Isabelle [1 ]
机构
[1] Univ Gloucestershire, Cheltenham, Glos, England
来源
AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2016 | 2017年 / 10162卷
关键词
Surveillance application; Visual scene analysis; Automated scene understanding; Knowledge representation; Spatiotemporal visual ontology; Symbolic reasoning; Computer vision; Pattern recognition; VISUAL SURVEILLANCE; ONTOLOGY; TRACKING; VIDEO; RECOGNITION; CONTEXT;
D O I
10.1007/978-3-319-53354-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting visible as well as invisible objects of interest in real-world scenes is crucial in new-generation video-surveillance. For this purpose, we design a fully intelligent system incorporating semantic, symbolic, and grounded information. In particular, we conceptualize temporal representations we use together with spatial and visual information in our multi-view tracking system. It uses them for automated reasoning and induction of knowledge about the multiple views of the studied scene, in order to automatically detect salient or hidden objects of interest. Tests on standard datasets demonstrated the efficiency and accuracy of our proposed approach.
引用
收藏
页码:302 / 313
页数:12
相关论文
共 50 条
  • [21] An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency
    Ye, Mengni
    Cao, Zhiguo
    Yu, Zhenghong
    MIPPR 2013: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2013, 8921
  • [22] Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity
    Bennett, Brandon
    Magee, Derek R.
    Cohn, Anthony G.
    Hogg, David C.
    IMAGE AND VISION COMPUTING, 2008, 26 (01) : 67 - 81
  • [23] A New Multi-agent System for Video Objects Segmentation and Tracking Based on Spatio-temporal Descriptor
    Chakroun, Mohamed
    Wali, Ali
    Alimi, Adel M.
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI'12), 2012, : 1214 - 1218
  • [24] TRAT: Tracking by attention using spatio-temporal features
    Saribas, Hasan
    Cevikalp, Hakan
    Kopuklu, Okan
    Uzun, Bedirhan
    NEUROCOMPUTING, 2022, 492 : 150 - 161
  • [25] Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
    Goyat, Yann
    Chateau, Thierry
    Bardet, Francois
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
  • [26] Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics
    Wang, Jiangliu
    Jiao, Jianbo
    Bao, Linchao
    He, Shengfeng
    Liu, Wei
    Liu, Yun-hui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3791 - 3806
  • [27] Learning motion representation for real-time spatio-temporal action localization
    Zhang, Dejun
    He, Linchao
    Tu, Zhigang
    Zhang, Shifu
    Han, Fei
    Yang, Boxiong
    PATTERN RECOGNITION, 2020, 103
  • [28] SURF-based Spatio-Temporal History Image Method for Action Representation
    Ahad, Md. Atiqur Rahman
    Tan, J. K.
    Kim, H.
    Ishikawa, S.
    2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2011,
  • [29] Noise Objects Tracking Using Multiple Order Statistics and Spatio-Temporal Track-Before-Detect Algorithm
    Mazurek, Przemyslaw
    IMAGE PROCESSING AND COMMUNICATIONS CHALLENGES 8, 2017, 525 : 112 - 119
  • [30] Efficient Multi-object Detection for Complexity Spatio-Temporal Scenes
    Wang, Kai
    Song, Xiangyu
    Sun, Shijie
    Zhao, Juan
    Xu, Cai
    Song, Huansheng
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 186 - 200