Detecting Hidden Objects Using Efficient Spatio-Temporal Knowledge Representation

被引:4
|
作者
Olszewska, Joanna Isabelle [1 ]
机构
[1] Univ Gloucestershire, Cheltenham, Glos, England
来源
AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2016 | 2017年 / 10162卷
关键词
Surveillance application; Visual scene analysis; Automated scene understanding; Knowledge representation; Spatiotemporal visual ontology; Symbolic reasoning; Computer vision; Pattern recognition; VISUAL SURVEILLANCE; ONTOLOGY; TRACKING; VIDEO; RECOGNITION; CONTEXT;
D O I
10.1007/978-3-319-53354-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting visible as well as invisible objects of interest in real-world scenes is crucial in new-generation video-surveillance. For this purpose, we design a fully intelligent system incorporating semantic, symbolic, and grounded information. In particular, we conceptualize temporal representations we use together with spatial and visual information in our multi-view tracking system. It uses them for automated reasoning and induction of knowledge about the multiple views of the studied scene, in order to automatically detect salient or hidden objects of interest. Tests on standard datasets demonstrated the efficiency and accuracy of our proposed approach.
引用
收藏
页码:302 / 313
页数:12
相关论文
共 50 条
  • [1] ClusterNet: Detecting Small Objects in Large Scenes by Exploiting Spatio-Temporal Information
    LaLonde, Rodney
    Zhang, Dong
    Shah, Mubarak
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4003 - 4012
  • [3] A model of fuzzy spatio-temporal knowledge representation and reasoning based on high-level Petri nets
    Ribaric, Slobodan
    Hrkac, Tomislav
    INFORMATION SYSTEMS, 2012, 37 (03) : 238 - 256
  • [4] Survey on visual rhythms: A spatio-temporal representation for video sequences
    Roberto e Souza, Marcos
    Maia, Helena de Almeida
    Vieira, Marcelo Bernardes
    Pedrini, Helio
    NEUROCOMPUTING, 2020, 402 : 409 - 422
  • [5] Segmentation and tracking of human sperm cells using spatio-temporal representation and clustering
    Berezansky, Michael
    Greenspanb, Hayit
    Cohen-Or, Daniel
    Eitan, Osnat
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [6] Improving Faces/Non-Faces Discrimination in Video Sequences by Using a Local Spatio-Temporal Representation
    Martinez-Diaz, Yoanna
    Mendez-Vazquez, Heydi
    Hernandez, Noslen
    Garcia-Reyes, Edel
    2013 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2013,
  • [7] Completion of Qualitative Spatio-temporal Explanations Using Context
    Binong, Juwesh
    Hazarika, Shyamanta M.
    PROCEEDINGS OF THE 2013 3RD IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2013, : 1600 - 1605
  • [8] Finding spatio-temporal salient paths for video objects discovery
    Luo, Ye
    Yuan, Junsong
    Lu, Jianwei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 : 45 - 54
  • [9] Spatio-temporal representation for multi-dimensional occlusion relation
    Wang, SS
    Liu, DY
    Liu, XD
    Yang, B
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1677 - 1681
  • [10] A Knowledge-Guided Spatio-Temporal Correlation Measure Considering Rules and Dependency Syntax for Knowledge Graph Adaptive Representation
    Qiu, Qinjun
    Li, Haiyan
    Hu, Xinxin
    Tian, Miao
    Ma, Kai
    Zhu, Yunqiang
    Sun, Kai
    Li, Weirong
    Wang, Shu
    Xie, Zhong
    TRANSACTIONS IN GIS, 2025, 29 (01)