Simulation of ITER edge-localized modes' impacts on the divertor surfaces within plasma accelerators

被引:21
|
作者
Makhlaj, V. A. [1 ]
Garkusha, I. E. [1 ]
Aksenov, N. N. [1 ]
Chuvilo, A. A. [1 ]
Ladygina, M. S. [1 ]
Landman, I. [2 ]
Linke, J. [5 ]
Malykhin, S. V. [3 ]
Pestchanyi, S. [2 ]
Pugachev, A. T. [3 ]
Sadowski, M. J. [4 ]
Skladnik-Sadowska, E. [4 ]
机构
[1] NSC Kharkov Inst Phys & Technol, Inst Plasma Phys, Kharkov, Ukraine
[2] Karlsruhe Inst Technol KIT, IHM, D-76344 Karlsruhe, Germany
[3] Kharkov Polytech Inst, NTU, UA-61002 Kharkov, Ukraine
[4] Andrzej Soltan Inst Nucl Studies IPJ, PL-05400 Otwock, Poland
[5] Forschungszentrum Julich, IEF, D-52425 Julich, Germany
关键词
TUNGSTEN TARGETS; HEAT LOADS; HELIUM; DAMAGE; HYDROGEN; ELMS;
D O I
10.1088/0031-8949/2011/T145/014061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Experimental simulations of ITER transient events with relevant surface heat load parameters (energy density and pulse duration) as well as particle loads were performed with a quasi-steady-state plasma accelerator Kh-50 and pulsed plasma guns. Additional shielding was observed during irradiation of the combined carbon-tungsten (C-W) surface. An evaporated C cloud protects W from evaporation even at an energy density of 2.4 MJ m(-2) in impacting plasma. The spectrum of tungsten and parameters of shielding layers were found under powerful exposure of the tungsten surface. An influence of material modification through plasma exposures on cracking thresholds of tungsten is emphasized. It was found that increasing the number of exposures to more than 20 plasma pulses of 0.25 ms in duration shifts the energy threshold for crack development from 0.3 down to 0.2 MJ m(-2). Differences in the evolution of tungsten substructure after exposure to helium and hydrogen plasma streams of different duration are also analyzed.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A classification scheme for edge-localized modes based on their probability distributions
    Shabbir, A.
    Hornung, G.
    Verdoolaege, G.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bachmann, C.
    Baciero, A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [22] Repetitive transport bursts in simulations of edge-localized modes in tokamaks
    Kleva, Robert G.
    Guzdar, Parvez N.
    PHYSICS OF PLASMAS, 2006, 13 (07)
  • [23] The model of synchronization between internal reconnections and edge-localized modes
    Bulanin, V. V.
    Kurskiev, G. S.
    Solokha, V. V.
    Yashin, A. Yu
    Zhiltsov, N. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (12)
  • [24] Effect of energetic ions on edge-localized modes in tokamak plasmas
    Dominguez-Palacios, J.
    Futatani, S.
    Garcia-Munoz, M.
    van Vuuren, A. Jansen
    Viezzer, E.
    Gonzalez-Martin, J.
    Toscano-Jimenez, M.
    Oyola, P.
    Todo, Y.
    Suzuki, Y.
    Sanchis, L.
    Rueda-Rueda, J.
    Galdon-Quiroga, J.
    Hidalgo-Salaverri, J.
    Chen, H.
    Rivero-Rodriguez, J. F.
    Velarde, L.
    NATURE PHYSICS, 2025, 21 (01) : 43 - 51
  • [25] A stochastic model of edge-localized modes in magnetically confined plasmas
    Kim, Eun-jin
    Hollerbach, Rainer
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2242):
  • [26] Comparison of small edge-localized modes on MAST and ASDEX Upgrade
    Kirk, A.
    Muller, H. W.
    Wolfrum, E.
    Meyer, H.
    Herrmann, A.
    Lunt, T.
    Rohde, V.
    Tamain, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
  • [27] Nonlinear simulation of edge-localized mode in a spherical tokamak
    Mizuguchi, N.
    Khan, R.
    Hayashi, T.
    Nakajima, N.
    NUCLEAR FUSION, 2007, 47 (07) : 579 - 585
  • [28] Statistical Characterization and Classification of Edge-Localized Plasma Instabilities
    Webster, A. J.
    Dendy, R. O.
    PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [29] Influence of poloidal equilibrium rotation in MHD simulations of edge-localized modes
    Pamela, S.
    Huysmans, G.
    Benkadda, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (07)
  • [30] Influence of a magnetic field on plasma energy transfer to material surfaces in edge-localized mode simulation experiments with QSPA-M
    Garkusha, I. E.
    Makhlai, V. A.
    Petrov, Yu. V.
    Chebotarev, V. V.
    Yelisyeyev, D. V.
    Kulik, N. V.
    Staltsov, V. V.
    Herashchenko, S. S.
    Solyakov, D. G.
    Ladygina, M. S.
    Marchenko, A. K.
    Aksenov, N. N.
    NUCLEAR FUSION, 2019, 59 (08)