Generalized semicommutative rings and their extensions

被引:15
|
作者
Baser, Muhittin [1 ]
Harmanci, Abdullah [2 ]
Kwak, Tai Keun [3 ]
机构
[1] Afyon Kocatepe Univ, Dept Math, TR-03200 Afyon, Turkey
[2] Hacettepe Univ, Dept Math, Ankara, Turkey
[3] Daejin Univ, Dept Math, Pochon 487711, South Korea
关键词
semicommutative rings; rigid rings; skew power series rings; extended Armendariz rings; Baer rings; p.p.-rings;
D O I
10.4134/BKMS.2008.45.2.285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an endomorphism a of a ring R., the endomorphism a is called semicommutative if ab = 0 implies a Ha(b) = 0 for a is an element of R. A ring R is called alpha-semicommulative if there exists a semicommutative endomorphism a of R. In this paper, various results of semicommutative rings are extended to a-semicommutative rings. In addition, we introduce the notion of an alpha-skew power series Armendariz ring which is an extension of Armendariz property in a ring R by considering the polynomials in the skew power series ring R[[x; alpha]]. We show that a number of interesting properties of a ring R transfer to its the skew power series ring R[[X; alpha]] and vice-versa such as the Baer property and the p.p.-property, when R is a-skew power series Armendariz. Several known results relating to a-rigid rings can be obtained as corollaries of our results.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 50 条
  • [31] Examples of Central Semicommutative Rings
    Wang, Yingying
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 427 - 432
  • [32] Revisiting J-semicommutative rings
    Subedi, Tikaram
    Roy, Debraj
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [33] Left Nil Zero Semicommutative Rings
    Subba, Sanjiv
    Subedi, Tikaram
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [34] Some Extensions of Generalized Morphic Rings and EM-rings
    Ghanem, Manal
    Abu Osba, Emad
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (01): : 111 - 123
  • [35] Strongly Semicommutative Rings Relative to a Monoid
    Nikmehr, M. J.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (11) : 1715 - 1730
  • [36] Skew ring extensions and generalized monoid rings
    E. P. Cojuhari
    B. J. Gardner
    Acta Mathematica Hungarica, 2018, 154 : 343 - 361
  • [37] Generalized iterated maximal essential extensions of rings
    Andruszkiewicz, RR
    ALGEBRA COLLOQUIUM, 2003, 10 (01) : 109 - 120
  • [38] EXTENSIONS OF GENERALIZED alpha-RIGID RINGS
    Ouyang, Lunqun
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2008, 3 : 103 - 116
  • [39] ON SEMICOMMUTATIVE PI-REGULAR RINGS
    BADAWI, A
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (01) : 151 - 157
  • [40] Quasi-Central Semicommutative Rings
    Yingying WANG
    Xiaoyan QIAO
    Weixing CHEN
    JournalofMathematicalResearchwithApplications, 2023, 43 (04) : 417 - 432