Fast 3-D Controlled-Source Electromagnetic Modeling Combining UPML and Rational Krylov Method

被引:0
作者
Liu, Jiren [1 ,2 ]
Xiao, Xiao [1 ,2 ]
Tang, Jingtian [1 ,2 ]
Ren, Zhengyong [1 ,2 ]
Huang, Xiangyu [1 ,2 ]
Zhang, Jifeng [3 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Key Lab Metallogen Predict Nonferrous Met & Geol, Minist Educ, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Key Lab Nonferrous Resources & Geol Hazards, Changsha 410083, Peoples R China
[3] Changan Univ, Sch Geol Engn & Geomat, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Mathematical models; Three-dimensional displays; Solid modeling; Sparse matrices; Electromagnetics; Numerical models; Measurement; Controlled-source electromagnetic (CSEM) method; forward modeling; rational Krylov (RK) method; uniaxial perfectly matched layer (UPML); FINITE-ELEMENT; TIME; ALGORITHM; INVERSION; CSEM; REDUCTION; EQUATIONS; GPR;
D O I
10.1109/LGRS.2022.3162695
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Controlled-source electromagnetic (CSEM) surveying is a critical tool for sensing and locating underground anomalies and structures. In this letter, based on uniaxial perfectly matched layer (UPML) and rational Krylov (RK) method, we propose a fast algorithm for 3-D Multifrequency CSEM modeling. We use the frequency-independent UPML to truncate the boundaries and adopt an RK method to rapidly solve the 3-D multifrequency CSEM problems. The accuracy and efficiency of our algorithm are verified by two examples, i.e., a two-layer model and a 3-D model. Numerical experiments indicate that our algorithm is computationally efficient, obtaining nearly 20-fold speedup on a laptop compared with the conventional 3-D CSEM using finite element method (3DCSEM) modeling.
引用
收藏
页数:5
相关论文
共 33 条
[1]   3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids [J].
Ansari, Seyedmasoud ;
Farquharson, Colin G. .
GEOPHYSICS, 2014, 79 (04) :E149-E165
[2]  
Bindel DS, 2006, LECT NOTES COMPUT SC, V3732, P286
[3]   Three-dimensional transient electromagnetic modelling using Rational Krylov methods [J].
Boerner, Ralph-Uwe ;
Ernst, Oliver G. ;
Guettel, Stefan .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (03) :2025-2043
[4]  
Castillo-Reyes O., 2022, IEEE T GEOSCIENCE RE, V60, P1, DOI [10.1109/TGRS.2021.3069042, DOI 10.1109/TGRS.2021.3069042]
[5]   And the geophysicist replied: "Which model do you want?" [J].
Constable, Steven ;
Orange, Arnold ;
Key, Kerry .
GEOPHYSICS, 2015, 80 (03) :E197-E212
[6]   3D marine magnetotelluric modeling and inversion with the finite-difference time-domain method [J].
de Ryhove, Sebastien de la Kethulle ;
Mittet, Rune .
GEOPHYSICS, 2014, 79 (06) :E269-E286
[7]   SPECTRAL APPROACH TO SOLVING 3-DIMENSIONAL MAXWELL DIFFUSION-EQUATIONS IN THE TIME AND FREQUENCY DOMAINS [J].
DRUSKIN, V ;
KNIZHERMAN, L .
RADIO SCIENCE, 1994, 29 (04) :937-953
[8]   A KRYLOV STABILITY-CORRECTED COORDINATE-STRETCHING METHOD TO SIMULATE WAVE PROPAGATION IN UNBOUNDED DOMAINS [J].
Druskin, Vladimir ;
Remis, Rob .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02) :B376-B400
[9]   Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD [J].
Feng, Deshan ;
Wang, Xun ;
Zhang, Bin .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 185 :220-229
[10]   Time-Reversal Ground-Penetrating Radar: Range Estimation With Cramer-Rao Lower Bounds [J].
Foroozan, Foroohar ;
Asif, Amir .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3698-3708