Martensitic transformation and shape memory effect at high temperatures in off-stoichiometric Co2VSi Heusler alloys

被引:30
作者
Jiang, Hengxing [1 ,2 ]
Xu, Xiao [3 ]
Omori, Toshihiro [3 ]
Nagasako, Makoto [3 ]
Ruan, Jingjing [1 ,2 ]
Yang, Shuiyuan [1 ,2 ]
Wang, Cuiping [1 ,2 ]
Liu, Xingjun [1 ,2 ]
Kainuma, Ryosuke [3 ]
机构
[1] Xiamen Univ, Fujian Prov Key Lab Mat Genome, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Mat, Xiamen 361005, Peoples R China
[3] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2016年 / 676卷
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Co-V-Si Hensler alloy; Martensitic transformations; Mechanical property; Shape memory effect; PHASE-TRANSFORMATION; PRE-DEFORMATION; NI; MICROSTRUCTURE; STABILIZATION; GA; EQUILIBRIA; STABILITY;
D O I
10.1016/j.msea.2016.08.083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Martensitic transformation in off-stoichiometric Co2VSi Heusler alloy was firstly confirmed in this work. The martensite phase presents an ordered 2M non-modulate D0(22) structure transformed from L2(1) Heusler structure. In the Co63.5V17.0Si19.5 alloy, the forward and reverse martensitic transformation temperatures are extremely high which reach up to 683 degrees C and 693 degrees C, respectively, higher than most known Heusler-type high-temperature shape memory alloys. And results also indicate that the single martensite phase alloy exhibits a good ductility and strength with the compressive strain of over 15% and strength of about 2300 MPa, respectively. What's more, the recoverable strain being maximal to around 3.1% can be obtained at high temperature (750-800 degrees C) due to its reverse martensitic transformation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 43 条
[1]   The effect of hafnium content on the transformation temperatures of Ni49TiS1-xHfx shape memory alloys [J].
Angst, DR ;
Thoma, PE ;
Kao, MY .
JOURNAL DE PHYSIQUE IV, 1995, 5 (C8) :747-752
[2]  
Biggs BT, 2003, PLATIN MET REV, V47, P142
[3]   EFFECT OF LOW-TEMPERATURE PHASE CHANGES ON MECHANICAL PROPERTIES OF ALLOYS NEAR COMPOSITION TINI [J].
BUEHLER, WJ ;
WILEY, RC ;
GILFRICH, JV .
JOURNAL OF APPLIED PHYSICS, 1963, 34 (05) :1475-&
[4]   Thermal stability of high-temperature Ni-Mn-Ga alloys [J].
Cesari, E. ;
Font, J. ;
Muntasell, J. ;
Ochin, P. ;
Pons, J. ;
Santamarta, R. .
SCRIPTA MATERIALIA, 2008, 58 (04) :259-262
[5]  
CHANG LC, 1951, T AM I MIN MET ENG, V191, P47
[6]   PHASE-TRANSITIONS AND HETEROGENEOUS EQUILIBRIA IN THE TARU HOMOGENEITY RANGE [J].
CHEN, BH ;
FRANZEN, HF .
JOURNAL OF THE LESS-COMMON METALS, 1990, 157 (01) :37-45
[7]   Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys [J].
Dogan, E. ;
Karaman, I. ;
Chumlyakov, Y. I. ;
Luo, Z. P. .
ACTA MATERIALIA, 2011, 59 (03) :1168-1183
[8]   MARTENSITIC TRANSFORMATIONS IN GOLD-TITANIUM, PALLADIUM-TITANIUM A PLATINUM-TITANIUM ALLOYS NEAR EQUIATOMIC COMPOSITION [J].
DONKERSLOOT, HC ;
VANVUCHT, JH .
JOURNAL OF THE LESS-COMMON METALS, 1970, 20 (02) :83-+
[9]  
ENAMI K, 1971, METALL TRANS, V2, P1487
[10]   High temperature shape memory alloys problems and prospects [J].
Firstov, G. S. ;
Van Humbeeck, J. ;
Koval, Yu. N. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (12) :1041-1047