Radial basis function Hermite collocation approach for the solution of time dependent convection-diffusion problems

被引:49
作者
La Rocca, A [1 ]
Rosales, AH [1 ]
Power, H [1 ]
机构
[1] Univ Nottingham, Sch Mech Mat & Mfg Engn, Nottingham NG7 2RD, England
关键词
hermite radial basis functions; convection-diffusion problems; method of fundamental solution;
D O I
10.1016/j.enganabound.2004.06.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a meshless numerical approach for the solution of time dependent convection-diffusion problems in terms of a Hermite radial basis function interpolation numerical scheme. To test the proposed scheme several numerical examples are analysed including problems with variable convective velocity and reaction coefficient. Comparisons are made with available analytical solutions. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 42 条
[1]  
Atluri SN, 2000, INT J NUMER METH ENG, V47, P537, DOI 10.1002/(SICI)1097-0207(20000110/30)47:1/3<537::AID-NME783>3.0.CO
[2]  
2-E
[3]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[4]   FUNDAMENTAL-SOLUTIONS METHOD FOR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BOGOMOLNY, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :644-669
[5]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[6]   Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems [J].
Chen, W ;
Hon, YC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (15) :1859-1875
[7]  
Chen W., 2000, International Journal of Nonlinear Sciences and Numerical Simulation, V1, P145, DOI 10.1515/IJNSNS.2000.1.3.145
[8]   A meshless, integration-free, and boundary-only RBF technique [J].
Chen, W ;
Tanaka, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :379-391
[9]  
DUBAL MR, 1994, J APPL SCI COMPUT, V1, P146
[10]  
DUBAL MR, 1993, APPROACHES NUMERICAL