Efficient local formulation for elasto-plastic corotational thin-walled beams

被引:6
作者
Alsafadie, Rabe [1 ]
Battini, Jean-Marc [2 ]
Hjiaj, Mohammed [1 ]
机构
[1] INSA Rennes, Struct Engn Res Grp LGCGM, F-35043 Rennes, France
[2] Royal Inst Technol, KTH, Dept Civil & Architectural Engn, SE-10044 Stockholm, Sweden
关键词
nonlinear analysis; corotational formulation; beam element; arbitrary cross-section; elastoplasticity; ELEMENT; INSTABILITY; TORSION;
D O I
10.1002/cnm.1311
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A local elasto-plastic formulation, based on a low-order nonlinear strain expression using Bernoulli beam kinematics, is presented in this paper. This element, together with the corotational framework proposed in (Comput. Meth. Appl. Mech. Eng. 2002; 191(17): 1755-1789) can be used to analyze the nonlinear buckling and postbuckling of thin-walled beams with arbitrary cross-section. The formulation captures both the Saint-Venant and warping torsional effects of open cross-sections. Numerical examples show that this local formulation is more efficient than the one proposed in (Comput. Meth. Appl. Mech. Eng. 2002; 191(51):5811-5831) based on a Timoshenko beam assumption. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:498 / 509
页数:12
相关论文
共 27 条
[1]   PLASTIC ANALYSIS OF TORSION OF A PRISMATIC BEAM [J].
BABA, S ;
KAJITA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (06) :927-944
[2]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[3]  
Batoz JL., 1990, MODELISATION STRUCTU, V2
[4]  
Battini J.M., 2002, Co-rotational Beam Elements in Instability Problems
[5]   Plastic instability of beam structures using co-rotational elements [J].
Battini, JM ;
Pacoste, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5811-5831
[6]   A BEAM FINITE-ELEMENT NON-LINEAR THEORY WITH FINITE ROTATIONS [J].
CARDONA, A ;
GERADIN, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (11) :2403-2438
[7]   Co-rotational finite element formulation for thin-walled beams with generic open section [J].
Chen, HH ;
Lin, WY ;
Hsiao, KM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (19-22) :2334-2370
[8]  
Crisfield M. A., 1991, Non-linear finite element analysis of solids and structures, V1
[9]   A unified co-rotational framework for solids, shells and beams [J].
Crisfield, MA ;
Moita, GF .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2969-2992
[10]  
FELIPPA CA, 2005, CUCAS0502 U COL CTR