Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro

被引:25
作者
Witherel, Claire E. [1 ]
Yu, Tony [1 ]
Concannon, Mark [1 ]
Dampier, Will [2 ]
Spiller, Kara L. [1 ]
机构
[1] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, 3141 Chestnut St, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Med, Dept Microbiol & Immunol, Philadelphia, PA 19104 USA
关键词
Macrophage; Cell-biomaterial interactions; Gene expression; Inflammation; Wound healing; FOREIGN-BODY REACTION; MACROPHAGE PHENOTYPE; TISSUE; PROLIFERATION; ANGIOGENESIS; ATTACHMENT; SPECTRUM; SUPPORT; MATRIX; GRAFTS;
D O I
10.1007/s12195-017-0494-7
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Chronic wounds remain a major clinical challenge. Human cryopreserved viable amniotic membrane (hCVAM) is among the most successful therapies, but the mechanisms of action remain loosely defined. Because proper regulation of macrophage behavior is critical for wound healing with biomaterial therapies, we hypothesized that hCVAM would positively regulate macrophage behavior in vitro, and that soluble factors released from the hCVAM would be important for this effect. Primary human pro-inflammatory (M1) macrophages were seeded directly onto intact hCVAM or cultured in separation via transwell inserts (Soluble Factors) in the presence of pro-inflammatory stimuli (interferon-gamma and lipopolysaccharide) to simulate the chronic wound environment. Macrophages were characterized after 1 and 6 days using multiplex gene expression analysis of 37 macrophage phenotype- and angiogenesis-related genes via NanoString (TM), and protein content from conditioned media collected at days 1, 3 and 6 was analyzed via enzyme linked immunosorbent assays. Gene expression analysis showed that Soluble Factors promoted significant upregulation of pro-inflammatory marker IL1B on day 1 yet downregulation of TNF on day 6 compared to the M1 macrophage control. In contrast, intact hCVAM, which includes both extracellular matrix, viable cells, and soluble factors, promoted downregulation of pro-inflammatory markers TNF, CCL5 and CCR7 on day 1 and endothelial receptor TIE1 on day 6, and upregulation of the anti-inflammatory marker IL10 on day 6 compared to the M1 Control. Other genes related to inflammation and angiogenesis (MMP9, VEGF, SPP1, TGFB1, etc.) were differentially regulated between the Soluble Factors and intact hCVAM groups at both time points, though they were not expressed at significantly different levels compared to the M1 Control. Interestingly, Soluble Factors promoted increased secretion of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), while direct contact with hCVAM inhibited secretion of TNF, relative to the M1 Control. Both Soluble Factors and intact hCVAM inhibited secretion of MMP9 and VEGF, pro-inflammatory proteins that are critical for angiogenesis and remodeling, compared to the M1 Control, with intact hCVAM having a stronger effect. In a simulated pro-inflammatory environment, intact hCVAM has distinct anti-inflammatory effects on primary human macrophages, and direct macrophage contact with intact hCVAM is required for these effects. These findings are important for the design of next generation immunomodulatory biomaterials for wound repair and regenerative medicine that may include living cells, soluble factors, or a controlled drug delivery system.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 60 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[3]   Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis [J].
Arnold, Ludovic ;
Henry, Adeline ;
Poron, Francoise ;
Baba-Amer, Yasmine ;
van Rooijen, Nico ;
Plonquet, Anne ;
Gherardi, Romain K. ;
Chazaud, Benedicte .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (05) :1057-1069
[4]   Tumor necrosis factor-alpha (TNF-a) is a therapeutic target for impaired cutaneous wound healing [J].
Ashcroft, Gillian S. ;
Jeong, Moon-Jin ;
Ashworth, Jason J. ;
Hardman, Matthew ;
Jin, Wenwen ;
Moutsopoulos, Niki ;
Wild, Teresa ;
McCartney-Francis, Nancy ;
Sim, Davis ;
McGrady, George ;
Song, Xiao-yu ;
Wahl, Sharon M. .
WOUND REPAIR AND REGENERATION, 2012, 20 (01) :38-49
[5]   Macrophage Phenotype as a Determinant of Biologic Scaffold Remodeling [J].
Badylak, Stephen F. ;
Valentin, Jolene E. ;
Ravindra, Anjani K. ;
McCabe, George P. ;
Stewart-Akers, Ann M. .
TISSUE ENGINEERING PART A, 2008, 14 (11) :1835-1842
[6]   TNF-α drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice [J].
Baluk, Peter ;
Yao, Li-Chin ;
Feng, Jennifer ;
Romano, Talia ;
Jung, Sonia S. ;
Schreiter, Jessica L. ;
Yan, Li ;
Shealy, David J. ;
McDonald, Donald M. .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (10) :2954-2964
[7]   Macrophage polarization in bacterial infections [J].
Benoit, Marie ;
Desnues, Benoit ;
Mege, Jean-Louis .
JOURNAL OF IMMUNOLOGY, 2008, 181 (06) :3733-3739
[8]   Good Research Practices for Comparative Effectiveness Research: Defining, Reporting and Interpreting Nonrandomized Studies of Treatment Effects Using Secondary Data Sources: The ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report-Part I [J].
Berger, Marc L. ;
Mamdani, Muhammad ;
Atkins, David ;
Johnson, Michael L. .
VALUE IN HEALTH, 2009, 12 (08) :1044-1052
[9]   Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component [J].
Brown, Bryan N. ;
Valentin, Jolene E. ;
Stewart-Akers, Ann M. ;
McCabe, George P. ;
Badylak, Stephen F. .
BIOMATERIALS, 2009, 30 (08) :1482-1491
[10]   Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue [J].
Cooke, M. ;
Tan, E. K. ;
Mandrycky, C. ;
He, H. ;
O'Connell, J. ;
Tseng, S. C. G. .
JOURNAL OF WOUND CARE, 2014, 23 (10) :465-+