Mixed mode II and III fatigue crack growth in a rail steel

被引:40
作者
Bonniot, Thomas [1 ,2 ]
Doquet, Veronique [1 ]
Mai, Si Hai [2 ]
机构
[1] Univ Paris Saclay, Ecole Polytech, UMR 7649, Lab Mecan Solides,CNRS, F-91120 Palaiseau, France
[2] SNCF Innovat & Res, 44 Ave Terroirs France, F-75012 Paris, France
关键词
Fatigue crack; Mode II; Mode III; Friction; Rail steel; ROLLING-CONTACT FATIGUE; THRESHOLD BEHAVIOR; PROPAGATION; SHEAR; MICROSTRUCTURE; CRITERION; 7075-T6; RCF;
D O I
10.1016/j.ijfatigue.2018.01.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Rolling contact fatigue cracks in rails undergo non-proportional mixed-mode I + II + III, in variable proportions along their front. In order to determine the crack growth thresholds and kinetics in mixed-mode asymmetric four point bending tests are run on a rail steel with different angles between the crack front and the shearing load, so as to vary the mode mixity ratio. For sufficiently high loading ranges, these tests give rise to coplanar shear-mode crack growth. The effective stress intensity factors (SIFs) are derived by an inverse method from the measured crack face relative displacements. It appears to be 10-70% lower than the nominal SIFs and to allow a reasonable correlation of the measured crack growth rates. The local application, ahead of the crack front, of shear-driven or tension-driven fatigue damage models - after 3D elastic-plastic computations of local stress and strain ranges - allows a successful prediction of crack fronts paths and growth rates.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 42 条
[1]   SURFACE SINGULARITY AND CRACK-PROPAGATION [J].
BAZANT, ZP ;
ESTENSSORO, LF .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1979, 15 (05) :405-426
[2]   Numerical modelling of a 3D rail RCF 'squat'-type crack under operating load [J].
Bogdanski, S ;
Olzak, M ;
Stupnicki, J .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1998, 21 (08) :923-935
[3]  
Brown M, 1994, 4TH INT C BIAXIAL MU, P3
[4]   FATIGUE AT NOTCHES SUBJECTED TO REVERSED TORSION AND STATIC AXIAL LOADS [J].
BROWN, MW ;
HAY, E ;
MILLER, KJ .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1985, 8 (03) :243-258
[5]  
DESTUYNDER P, 1983, J MEC THEOR APPL, V2, P113
[6]   Local approach to fatigue cracks bifurcation [J].
Doquet, V. ;
Bertolino, G. .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (05) :942-950
[7]   3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V [J].
Doquet, V. ;
Bui, Q. H. ;
Bertolino, G. ;
Merhy, E. ;
Alves, L. .
INTERNATIONAL JOURNAL OF FRACTURE, 2010, 165 (01) :61-76
[8]   Influence of the loading path on fatigue crack growth under mixed-mode loading [J].
Doquet, V. ;
Abbadi, M. ;
Bui, Q. H. ;
Pons, A. .
INTERNATIONAL JOURNAL OF FRACTURE, 2009, 159 (02) :219-232
[9]   Branch crack development from the flank of a fatigue crack propagating in mode II [J].
Doquet, V ;
Frelat, J .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2001, 24 (03) :207-214
[10]   A material and environment-dependent criterion for the prediction of fatigue crack paths in metallic structures [J].
Doquet, Veronique ;
Bertolino, Graciela .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (11) :3399-3412