Selection and Verification of Candidate Reference Genes for Mature MicroRNA Expression by Quantitative RT-PCR in the Tea Plant (Camellia sinensis)

被引:41
作者
Song, Hui [1 ]
Zhang, Xiao [1 ]
Shi, Cong [1 ]
Wang, Shuangshuang [1 ]
Wu, Ailin [1 ]
Wei, Chaoling [1 ]
机构
[1] Anhui Agr Univ, State Key Lab Tea Plant Biol & Utilizat, 130 Changjiang West Rd, Hefei 230036, Peoples R China
来源
GENES | 2016年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
Camellia sinensis; microRNA; candidate reference gene; qRT-PCR; tea plant; expression; REAL-TIME; GREEN TEA; RESPONSIVE MICRORNAS; SEQUENCE TAGS; SMALL RNAS; IDENTIFICATION; VALIDATION; NORMALIZATION; TARGETS; MIRNAS;
D O I
10.3390/genes7060025
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a rapid and sensitive method for analyzing microRNA (miRNA) expression. However, accurate qRT-PCR results depend on the selection of reliable reference genes as internal positive controls. To date, few studies have identified reliable reference genes for differential expression analysis of miRNAs among tissues, and among experimental conditions in plants. In this study, three miRNAs and four non-coding small RNAs (ncRNA) were selected as reference candidates, and the stability of their expression was evaluated among different tissues and under different experimental conditions in the tea plant (Camellia sinensis) using the geNorm and NormFinder programs. It was shown that miR159a was the best single reference gene in the bud to the fifth leaf, 5S rRNA was the most suitable gene in different organs, miR6149 was the most stable gene when the leaves were attacked by Ectropis oblique and U4, miR5368n and miR159a were the best genes when the leaves were treated by methyl jasmonate (MeJA), salicylic acid (SA) and abscisic acid (ABA), respectively. Our results provide suitable reference genes for future investigations on miRNA functions in tea plants.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets
    Andersen, CL
    Jensen, JL
    Orntoft, TF
    [J]. CANCER RESEARCH, 2004, 64 (15) : 5245 - 5250
  • [2] [Anonymous], J NANOMATERIALS
  • [3] Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data
    Artico, Sinara
    Nardeli, Sarah M.
    Neto, Osmundo B. Oliveira
    Grossi-de-Sa, Maria Fatima
    Alves-Ferreira, Marcio
    [J]. BMC PLANT BIOLOGY, 2010, 10
  • [4] Quantitative real-time RT-PCR - a perspective
    Bustin, SA
    Benes, V
    Nolan, T
    Pfaffl, MW
    [J]. JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2005, 34 (03) : 597 - 601
  • [5] Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems
    Bustin, SA
    [J]. JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2002, 29 (01) : 23 - 39
  • [6] Real-time quantification of microRNAs by stem-loop RT-PCR
    Chen, CF
    Ridzon, DA
    Broomer, AJ
    Zhou, ZH
    Lee, DH
    Nguyen, JT
    Barbisin, M
    Xu, NL
    Mahuvakar, VR
    Andersen, MR
    Lao, KQ
    Livak, KJ
    Guegler, KJ
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (20) : e179.1 - e179.9
  • [7] Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions
    Chen, Lei
    Zhong, Hai-ying
    Kuang, Jian-fei
    Li, Jian-guo
    Lu, Wang-jin
    Chen, Jian-ye
    [J]. PLANTA, 2011, 234 (02) : 377 - 390
  • [8] Small RNAs and Their Roles in Plant Development
    Chen, Xuemei
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2009, 25 : 21 - 44
  • [9] Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis
    Deng, Wei-Wei
    Zhang, Ming
    Wu, Jian-Qiang
    Jiang, Zheng-Zhong
    Tang, Lei
    Li, Ye-Yun
    Wei, Chao-Ling
    Jiang, Chang-Jun
    Wan, Xiao-Chun
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (03) : 272 - 282
  • [10] How to do successful gene expression analysis using real-time PCR
    Derveaux, Stefaan
    Vandesompele, Jo
    Hellemans, Jan
    [J]. METHODS, 2010, 50 (04) : 227 - 230