Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein

被引:314
作者
Rosowski, Emily E. [1 ]
Lu, Diana [1 ]
Julien, Lindsay [1 ]
Rodda, Lauren [1 ]
Gaiser, Rogier A. [1 ]
Jensen, Kirk D. C. [1 ]
Saeij, Jeroen P. J. [1 ]
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
PARASITOPHOROUS VACUOLE MEMBRANE; GENE-EXPRESSION; SURFACE-ANTIGEN; INFECTED MACROPHAGES; DISTINCT MECHANISMS; PARASITE GENOTYPE; DENDRITIC CELLS; IMMUNE-SYSTEM; HOST; TRANSCRIPTION;
D O I
10.1084/jem.20100717
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
NF-kappa B is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-kappa B pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-kappa B than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-kappa B nuclear translocation and NF-kappa B-mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-kappa B, demonstrating that GRA15 alone is sufficient for NF-kappa B activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-gamma. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii's host cell-modifying arsenal.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 59 条
[11]   The Pfam protein families database [J].
Finn, Robert D. ;
Tate, John ;
Mistry, Jaina ;
Coggill, Penny C. ;
Sammut, Stephen John ;
Hotz, Hans-Rudolf ;
Ceric, Goran ;
Forslund, Kristoffer ;
Eddy, Sean R. ;
Sonnhammer, Erik L. L. ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D281-D288
[12]   Infection of human immunodeficiency virus 1 transgenic mice with Toxoplasma gondii stimulates proviral transcription in macrophages in vivo [J].
Gazzinelli, RT ;
Sher, A ;
Cheever, A ;
Gerstberger, S ;
Martin, MA ;
Dickie, P .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (04) :1645-1655
[13]  
GAZZINELLI RT, 1994, J IMMUNOL, V153, P2533
[14]   Missing pieces in the NF-κB puzzle [J].
Ghosh, S ;
Karin, M .
CELL, 2002, 109 :S81-S96
[15]   DiRE: identifying distant regulatory elements of co-expressed genes [J].
Gotea, Valer ;
Ovcharenko, Ivan .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W133-W139
[16]   Signaling to NF-κB [J].
Hayden, MS ;
Ghosh, S .
GENES & DEVELOPMENT, 2004, 18 (18) :2195-2224
[17]   STAT3 regulates NF-κB recruitment to the IL-12p40 promoter in dendritic cells [J].
Hoentjen, F ;
Sartor, RB ;
Ozaki, M ;
Jobin, C .
BLOOD, 2005, 105 (02) :689-696
[18]   IMMUNOPATHOGENESIS OF TOXOPLASMIC ENCEPHALITIS [J].
HUNTER, CA ;
REMINGTON, JS .
JOURNAL OF INFECTIOUS DISEASES, 1994, 170 (05) :1057-1067
[19]   Early Response of Mucosal Epithelial Cells during Toxoplasma gondii Infection [J].
Ju, Chia-Hsin ;
Chockalingam, Annapoorani ;
Leifer, Cynthia A. .
JOURNAL OF IMMUNOLOGY, 2009, 183 (11) :7420-7427
[20]   Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii [J].
Khan, A ;
Taylor, S ;
Su, C ;
Mackey, AJ ;
Boyle, J ;
Cole, R ;
Glover, D ;
Tang, K ;
Paulsen, IT ;
Berriman, M ;
Boothroyd, JC ;
Pfefferkorn, ER ;
Dubey, JP ;
Ajioka, JW ;
Roos, DS ;
Wootton, JC ;
Sibley, LD .
NUCLEIC ACIDS RESEARCH, 2005, 33 (09) :2980-2992