Titanate nanosheets and nanotubes: alkalinity manipulated synthesis and catalyst support application

被引:28
作者
Chang, Zheng [1 ]
Liu, Jing [1 ]
Liu, Junfeng [1 ]
Sun, Xiaoming [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
METHANOL OXIDATION; LAYERED STRUCTURE; CARBON NANOTUBES; GRAPHENE SHEETS; NANOPARTICLES; ROUTE; SHAPE;
D O I
10.1039/c0jm01624a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanate nanosheets (TiO-NS) and nanotubes (TiO-NT) were prepared under hydrothermal or solvothermal conditions in varied alkali solutions following similar procedures. Relatively low alkalinity (5M NaOH) was associated with TiO-NS, but high alkalinity (10M) resulted in TiO-NT. Addition of low-boiling point organic solvents could increase the reproducibility of TiO-NT, and sometimes lower the alkalinity needed for nanotubes formation. The two nanomaterials were used to load Pd nanoparticles to study their morphology-dependence as catalyst supports. The Pd-loaded titanate nanosheets (Pd/TiO-NS) showed higher activity than the Pd-loaded nanotubes (Pd/TiO-NT) in CO catalytic oxidation reactions. High resolution transmission electronic micrography (HRTEM) revealed much better dispersion of the supported Pd nanoparticles on nanosheets than nanotubes. The better catalytic performance of Pd/TiO-NS was believed to be related to less aggregation of the Pd nanoparticles on TiO-NS.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 37 条
[1]  
Choy JH, 2001, J MATER CHEM, V11, P2232, DOI 10.1039/b104551m
[2]   Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis [J].
Chrzanowski, W ;
Wieckowski, A .
LANGMUIR, 1998, 14 (08) :1967-1970
[3]   Raman scattering properties of a protonic titanate HxTi2-x/4□x/4O4•H2O (□, vacancy; x=0.7) with lepidocrocite-type layered structure [J].
Gao, Tao ;
Fjellvag, Helmer ;
Norby, Poul .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (31) :9400-9405
[4]   Topological properties of titanate nanotubes [J].
Gao, Tao ;
Wu, Qinglan ;
Fjellvag, Helmer ;
Norby, Poul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (23) :8548-8552
[5]   Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis [J].
Gateshki, M ;
Hwang, SJ ;
Park, DH ;
Ren, Y ;
Petkov, V .
CHEMISTRY OF MATERIALS, 2004, 16 (24) :5153-5157
[6]   Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion [J].
Hu, Linhua ;
Peng, Qing ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (48) :16136-+
[7]   High-Temperature Formation of Titanate Nanotubes and the Transformation Mechanism of Nanotubes into Nanowires [J].
Huang, Jiquan ;
Cao, Yongge ;
Huang, Qiufen ;
He, Hong ;
Liu, Yuan ;
Guo, Wang ;
Hong, Maochun .
CRYSTAL GROWTH & DESIGN, 2009, 9 (08) :3632-3637
[8]   Enhanced Photocatalytic Hydrogen Production from Water-Methanol Solution by Nickel Intercalated into Titanate Nanotube [J].
Jang, Jum Suk ;
Choi, Sun Hee ;
Kim, Dong Hyun ;
Jang, Ji Wook ;
Lee, Kyung Sub ;
Lee, Jae Sung .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8990-8996
[9]   Synthesis and characterization of a new mesoporous alumina-pillared titanate with a double-layer arrangement structure [J].
Kooli, F ;
Sasaki, T ;
Rives, V ;
Watanabe, M .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (02) :497-501
[10]   Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction [J].
Kou, Rong ;
Shao, Yuyan ;
Wang, Donghai ;
Engelhard, Mark H. ;
Kwak, Ja Hun ;
Wang, Jun ;
Viswanathan, Vilayanur V. ;
Wang, Chongmin ;
Lin, Yuehe ;
Wang, Yong ;
Aksay, Ilhan A. ;
Liu, Jun .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (05) :954-957