The existence of solitary waves of singularly perturbed mKdV-KS equation

被引:27
作者
Fan, XH [1 ]
Tian, LX [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a sort of nonlinear reaction diffusion equation based on the modified Korteweg-de Vries (mKdV) equation with a higher order singularly perturbing term as the Kuramoto-Sivashinsky (KS) equation, called mKdV-KS equation. Special attention is paid to the question of the existence of solitary wave solutions. Based on the analogue between solitary wave solution and homoclinic orbits of the associated ordinary differential equations, from geometric singular perturbation point of view, we prove that solitary wave persists when the perturbation parameter is suitably small. This argument does not require an explicit expression for the original mKdV solitary wave solution. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1111 / 1118
页数:8
相关论文
共 14 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   A geometric approach to singularly perturbed nonlocal reaction-diffusion equations [J].
Bose, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (02) :431-454
[3]  
CAMASSA R, 1996, MELNIKOV METHOD HOMO
[4]   FUNDAMENTAL-CONCEPTS OF MATCHING [J].
ECKHAUS, W .
SIAM REVIEW, 1994, 36 (03) :431-439
[6]  
Gu CH., 1999, DARBOUX TRANSFORMATI
[7]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42
[8]  
GUO B, 2004, COMMUN NONLINEAR SCI, V9, P431
[9]  
Jones CKRT., 1994, LECT NOTES MATH, V1609, P45
[10]   Asymptotic analysis of two reduction methods for systems of chemical reactions [J].
Kaper, HG ;
Kaper, TJ .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 165 (1-2) :66-93