Stress and Adrenergic Function: HIF1α, a Potential Regulatory Switch

被引:15
|
作者
Wong, Dona Lee [1 ,2 ]
Tai, T. C. [1 ,2 ,3 ]
Wong-Faull, David C. [1 ]
Claycomb, Robert [1 ]
Siddall, Brenda J. [2 ]
Bell, Rose Ann [2 ]
Kvetnansky, Richard [4 ]
机构
[1] Harvard Univ, Sch Med, Dept Psychiat, Lab Mol & Dev Neurobiol McLean Hosp, Belmont, MA 02478 USA
[2] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Nancy Pritzker Lab Dev & Mol Neurobiol, Stanford, CA 94306 USA
[3] Laurentian Univ, Div Med, No Ontario Sch Med, Sudbury, ON P3E 2C6, Canada
[4] Slovak Acad Sci, Inst Expt Endocrinol, Bratislava, Slovakia
关键词
Stress; Phenylethanolamine N-methyltransferase; Transcriptional control; Egr-1; Sp1; HIF1; alpha; PHENYLETHANOLAMINE-N-METHYLTRANSFERASE; TRANSCRIPTION FACTORS SP1; RAT ADRENAL-GLAND; MESSENGER-RNA; GENE-EXPRESSION; HYPOXIA; ACTIVATION; EGR-1; STIMULATION; CELLS;
D O I
10.1007/s10571-010-9567-z
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Stress elicits adrenal epinephrine and cortisol release into the bloodstream to initiate physiological and behavioral responses to counter and overcome stress, the classic "fight or flight" response (Cannon and De La Paz, Am J Physiol 28:64-70, 1911). Stress and the stress hormone epinephrine also contribute to the pathophysiology of illness, e.g., behavioral disorders, cardiovascular disease, and immune dysfunction. Epinephrine itself is regulated by stress through its biosynthesis by phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28). Single and repeated immobilization (IMMO) stress in rats stimulates adrenal PNMT mRNA and protein expression via the transcription factors, Egr-1 and Sp1. Moderate hypoxic stress increases PNMT promotor-driven gene expression and endogenous PNMT mRNA and protein in PC12 cells. Induction is initiated through cAMP and PLC signaling, with PKA, PKC, PI3K, ERK1/2 MAPK, and p38 MAPK continuing downstream signal transduction, followed by activation of Egr-1, and Sp1. While functional Egr-1 and Sp1 binding sites exist within the proximal PNMT promoter, a putative hypoxia response element is a weak HIF binding site. Yet, HIF1 alpha overexpression increases PNMT promoter-driven luciferase activity and endogenous PNMT. When the Egr-1 or Sp1 sites are mutated, HIFI a does not stimulate the PNMT promoter. siRNA knock down of Egr-1 or Sp1 prevents promoter activation while siRNA knock down of HIF1 alpha inhibits Egr-1 and Sp1 induction. Findings suggest that hypoxia activates the PNMT gene indirectly via HIF1 alpha stimulation of Egr-1 and Sp1. Thus, for stress-induced illnesses where adrenergic dysfunction is implicated, HIF la may be an "on-off" switch regulating adrenergic responses to stress and a potential target for therapeutic intervention.
引用
收藏
页码:1451 / 1457
页数:7
相关论文
共 50 条
  • [41] HIF1α Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes
    Guimaraes-Camboa, Nuno
    Stowe, Jennifer
    Aneas, Ivy
    Sakabe, Noboru
    Cattaneo, Paola
    Henderson, Lindsay
    Kilberg, Michael S.
    Johnson, Randall S.
    Chen, Ju
    McCulloch, Andrew D.
    Nobrega, Marcelo A.
    Evans, Sylvia M.
    Zambon, Alexander C.
    DEVELOPMENTAL CELL, 2015, 33 (05) : 507 - 521
  • [42] Theileria induces oxidative stress and HIF1α activation that are essential for host leukocyte transformation
    S Medjkane
    M Perichon
    J Marsolier
    J Dairou
    J B Weitzman
    Oncogene, 2014, 33 : 1809 - 1817
  • [43] HIF1α reboots fetal haemoglobin production
    Alex Eccleston
    Nature Reviews Drug Discovery, 2022, 21 : 878 - 878
  • [44] HIF1α reboots fetal haemoglobin production
    Eccleston, Alex
    NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (12) : 878 - 878
  • [45] Normoxic accumulation of HIF1α is associated with glutaminolysis
    Kappler, Matthias
    Pabst, Ulrike
    Rot, Swetlana
    Taubert, Helge
    Wichmann, Henri
    Schubert, Johannes
    Bache, Matthias
    Weinholdt, Claus
    Immel, Uta-Dorothee
    Grosse, Ivo
    Vordermark, Dirk
    Eckert, Alexander W.
    CLINICAL ORAL INVESTIGATIONS, 2017, 21 (01) : 211 - 224
  • [46] Differential modulation of HIF1 function in RF/6A and HUVEC cells.
    Rojo-Niersbach, EG
    Ottlecz, A
    Buehler-Nurmi, H
    Lambrou, G
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U316 - U316
  • [47] The Differential Role of Hif1 β/Arnt and the Hypoxic Response in Adipose Function, Fibrosis, and Inflammation
    Lee, Kevin Y.
    Gesta, Stephane
    Boucher, Jeremie
    Wang, Xiaohui L.
    Kahn, C. Ronald
    CELL METABOLISM, 2011, 14 (04) : 491 - 503
  • [48] Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors
    Meyers, Lauren M.
    Luczak, Casey Krawic Michal W.
    Luczak, Michal W.
    Zhitkovich, Anatoly
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2022, 445
  • [49] HIF1α in Tumorigenesis of Adenoid Cystic Carcinoma
    Lim, Yun-Sung
    Cha, Wonjae
    Park, Min-Woo
    Jeong, Woo-Jin
    Ahn, Soon-Hyun
    ANTICANCER RESEARCH, 2017, 37 (02) : 599 - 606
  • [50] Differential but Complementary HIF1α and HIF2α Transcriptional Regulation
    Downes, Nicholas L.
    Laham-Karam, Nihay
    Kaikkonen, Minna U.
    Yla-Herttuala, Seppo
    MOLECULAR THERAPY, 2018, 26 (07) : 1735 - 1745