QUANTUM ISOMETRY GROUPS OF 0 DIMENSIONAL MANIFOLDS

被引:22
作者
Bhowmick, Jyotishman [1 ]
Goswami, Debashish [1 ]
Skalski, Adam [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Kolkata 700208, India
[2] Univ Lodz, Dept Math, PL-90238 Lodz, Poland
基金
英国工程与自然科学研究理事会;
关键词
Compact quantum group; quantum isometry groups; spectral triples; AF algebras;
D O I
10.1090/S0002-9947-2010-05141-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum isometry groups of spectral triples associated with approximately finite-dimensional C algebras are shown to arise as inductive limits of quantum symmetry groups of corresponding truncated Bratteli diagrams This is used to determine explicitly the quantum isometry group of the natural spectral triple on the algebra of continuous functions on the middle-third Cantor set It is also shown that the quantum symmetry groups of finite graphs or metric spaces coincide with the quantum isometry groups of the col responding classical objects equipped with natural Laplacians
引用
收藏
页码:901 / 921
页数:21
相关论文
共 13 条
[1]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[2]  
BANICA T, 1921, J MATH, V219, P1
[3]  
BHOWMICK J, ARXIV08063687
[4]   Quantum Isometry Groups: Examples and Computations [J].
Bhowmick, Jyotishman ;
Goswami, Debashish .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (02) :421-444
[5]   Quantum automorphism groups of finite graphs [J].
Bichon, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :665-673
[6]  
CHAKRABORTY PS, ARXIV0306064
[7]  
CHRISTENSEN E, 2007, MATH S, V100
[8]  
Christensen E, 2006, J OPERAT THEOR, V56, P17
[9]  
CONNES A, 1989, DYNARTI SYSTE, V9, P207
[10]   Quantum Group of Isometries in Classical and Noncommutative Geometry [J].
Goswami, Debashish .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (01) :141-160