Two-body Coulomb problems with sources

被引:8
作者
Gasaneo, G. [1 ,2 ]
Ancarani, L. U. [3 ]
机构
[1] Univ Nacl Sur, Dept Fis, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Univ Paul Verlaine Metz, Lab Phys Mol & Collis, F-57078 Metz, France
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 04期
关键词
BREAKUP;
D O I
10.1103/PhysRevA.82.042706
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The two-body Coulomb Schrodinger equation with different types of nonhomogeneities are studied. The particular solution of these nonhomogeneous equations is expressed in closed form in terms of a two-variable hypergeometric function. A particular representation of the latter allows one to study efficiently the solution in the asymptotic limit of large values of the coordinate and hence the associated physics. Simple sources are first considered, and a complete analysis of scattering and bound states is performed. The solutions corresponding to more general (arbitrary) sources are then provided and written in terms of more general hypergeometric functions.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] Alhaidari A. D., 2008, The J-Matrix Method: Developments and Applications
  • [3] Derivatives of any order of the confluent hypergeometric function 1F1(a,b,z) with respect to the parameter a or b
    Ancarani, L. U.
    Gasaneo, G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [4] ANCARANI LU, J MATH PHYS UNPUB
  • [5] Appell P., 1926, Fonctions hypergeometriques et hyperspheriques
  • [6] Babister AW., 1967, Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations
  • [7] Bransden B.H., 2003, Physics of atoms and molecules
  • [8] CALCULATION OF 2-PHOTON PROCESSES IN HYDROGEN WITH AN L2 BASIS
    BROAD, JT
    [J]. PHYSICAL REVIEW A, 1985, 31 (03) : 1495 - 1514
  • [9] Buchholz H., 1969, CONFLUENT HYPERGEOME
  • [10] ERDELYI A, 1953, HIGHER TRASCENDENTAL, V1