Linear bounds for the normal covering number of the symmetric and alternating groups

被引:6
作者
Bubboloni, Daniela [1 ]
Praeger, Cheryl E. [2 ]
Spiga, Pablo [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Western Australia, Sch Phys Math & Comp, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 191卷 / 02期
关键词
Symmetric groups; Conjugacy classes; Normal coverings; Partitions; FINITE; POLYNOMIALS;
D O I
10.1007/s00605-019-01287-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The normal covering number gamma(G) of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for gamma(Sn) when n is even, and for gamma(An), when n is odd.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 16 条
[1]  
Andrews G.E., 1976, ENCY MATH ITS APPL
[2]   Polynomials with roots mod p for all primes p [J].
Brandl, R ;
Bubboloni, D ;
Hupp, I .
JOURNAL OF GROUP THEORY, 2001, 4 (02) :233-239
[3]   Normal coverings of linear groups [J].
Britnell, John R. ;
Maroti, Attila .
ALGEBRA & NUMBER THEORY, 2013, 7 (09) :2085-2102
[4]  
Bubboloni D, 2016, MANUSCRIPTA MATH, V151, P477, DOI 10.1007/s00229-016-0848-9
[5]  
Bubboloni D, 2014, INT J GROUP THEORY, V3, P57
[6]   Normal coverings and pairwise generation of finite alternating and symmetric groups [J].
Bubboloni, Daniela ;
Praeger, Cheryl E. ;
Spiga, Pablo .
JOURNAL OF ALGEBRA, 2013, 390 :199-215
[7]   Compositions of n satisfying some coprimality conditions [J].
Bubboloni, Daniela ;
Luca, Florian ;
Spiga, Pablo .
JOURNAL OF NUMBER THEORY, 2012, 132 (12) :2922-2946
[8]   Normal coverings of finite symmetric and alternating groups [J].
Bubboloni, Daniela ;
Praeger, Cheryl E. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) :2000-2024
[9]   On the Diophantine equation xm-1/x-1 = yn-1/y-1 [J].
Bugeaud, Y ;
Shorey, TN .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (01) :61-75
[10]  
El Bachraoui M, 2008, FIBONACCI QUART, V46-47, P341