Design principles for water dissociation catalysts in high-performance bipolar membranes

被引:119
作者
Chen, Lihaokun [1 ,2 ]
Xu, Qiucheng [1 ,2 ,3 ]
Oener, Sebastian Z. [1 ,2 ,4 ]
Fabrizio, Kevin [1 ,2 ]
Boettcher, Shannon W. [1 ,2 ]
机构
[1] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[2] Univ Oregon, Oregon Ctr Electrochem, Eugene, OR 97403 USA
[3] Tech Univ Denmark, Dept Phys, Surface Phys & Catalysis Surf Cat Sect, DK-2800 Lyngby, Denmark
[4] Fritz Haber Inst, Max Planck Soc, Dept Interface Sci, D-14195 Berlin, Germany
关键词
CURRENT-DENSITY; ELECTRIC-FIELD; CO2; ELECTROLYSIS; LAYER;
D O I
10.1038/s41467-022-31429-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Water dissociation (WD, H2O -> H+ + OH-) is the core process in bipolar membranes (BPMs) that limits energy efficiency. Both electric-field and catalytic effects have been invoked to describe WD, but the interplay of the two and the underlying design principles for WD catalysts remain unclear. Using precise layers of metal-oxide nanoparticles, membrane-electrolyzer platforms, materials characterization, and impedance analysis, we illustrate the role of electronic conductivity in modulating the performance of WD catalysts in the BPM junction through screening and focusing the interfacial electric field and thus electrochemical potential gradients. In contrast, the ionic conductivity of the same layer is not a significant factor in limiting performance. BPM water electrolyzers, optimized via these findings, use -30-nm-diameter anatase TiO2 as an earth-abundant WD catalyst, and generate O-2 and H-2 at 500 mA cm(-2) with a record-low total cell voltage below 2 V. These advanced BPMs might accelerate deployment of new electrodialysis, carbon-capture, and carbon-utilization technology.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Catalytic Polyelectrolyte Multilayers at the Bipolar Membrane Interface [J].
Abdu, Said ;
Sricharoen, Kittikun ;
Wong, John E. ;
Muljadi, Eko S. ;
Melin, Thomas ;
Wessling, Matthias .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :10445-10455
[2]   PEM/AEM Junction Design for Bipolar Membrane Fuel Cells [J].
Ahlfield, John M. ;
Liu, Lisha ;
Kohl, Paul A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :F1165-F1171
[3]  
[Anonymous], 2022, BIPOLAR MEMBRANE ELE
[4]   Tailoring the interface layer of the bipolar membrane [J].
Balster, J. ;
Srinkantharajah, S. ;
Sumbharaju, R. ;
Punt, I. ;
Lammertink, R. G. H. ;
Stamatialis, D. F. ;
Wessling, M. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 365 (1-2) :389-398
[5]   Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes [J].
Bui, Justin C. ;
Digdaya, Ibadillah ;
Xiang, Chengxiang ;
Bell, Alexis T. ;
Weber, Adam Z. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) :52509-52526
[6]   High-Performance Bipolar Membrane Development for Improved Water Dissociation [J].
Chen, Yingying ;
Wrubel, Jacob A. ;
Klein, W. Ellis ;
Kabir, Sadia ;
Smith, Wilson A. ;
Neyerlin, K. C. ;
Deutsch, Todd G. .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (11) :4559-4569
[7]   Water splitting promoted by electronically conducting interlayer material in bipolar membranes [J].
Chen, Yingying ;
Martinez, Rodrigo J. ;
Gervasio, Don ;
Baygents, James C. ;
Farrell, James .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (01) :33-40
[8]   Characterizing Through-Plane and In-plane Ionic Conductivity of Polymer Electrolyte Membranes [J].
Cooper, Kevin R. .
POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01) :1371-1380
[9]  
EIGEN M, 1955, Z ELEKTROCHEM, V59, P986
[10]   PREPARATION AND CHARACTERIZATION OF BIPOLAR ION-EXCHANGE MEMBRANES [J].
FRILETTE, VJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1956, 60 (04) :435-439