TENSOR BASED DIMENSION REDUCTION FOR POLARIMETRIC SAR DATA

被引:4
作者
Tao, Mingliang [1 ]
Zhou, Feng [1 ]
Zhang, Zijing [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
radar polarimetry; synthetic aperture radar; tensor decomposition; independent component analysis; dimension reduction;
D O I
10.1109/IGARSS.2014.6947058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of target decomposition theorems for polarimetric synthetic aperture radar (PolSAR) data, various informative polarimetric descriptors could be obtained. The redundancy among these descriptors poses a hindrance to accurate classification. In this paper, we propose a tensor-based dimension reduction technique, which aims to obtain a lower-dimensional intrinsic feature set from the high-dimensional polarimetric manifold. We combine 48 polarimetric features together and formulate them as a third-mode tensor. The spatial information is taken into consideration for feature reduction. Experimental results in comparison with principal component analysis (PCA), independent component analysis (ICA) and Laplacian Eigenmaps (LE) proves its effectiveness.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Speckle Reduction of Polarimetric SAR Image Based on ICA-SCS Algorithm
    Chen, Hongyan
    Ma, Shang
    Yao, Yuancheng
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 752 - 755
  • [22] An Improvement on the Complete Model-Based Decomposition of Polarimetric SAR Data
    An, Wentao
    Xie, Chunhua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1926 - 1930
  • [23] Polarimetric SAR Speckle Reduction by Hybrid Iterative Filtering
    Yahia, Mohamed
    Ali, Tarig
    Mortula, Md Maruf
    Abdelfattah, Riadh
    El Mahdy, Samy
    IEEE ACCESS, 2020, 8 : 89603 - 89616
  • [24] A study on polarimetric correlation coefficient for feature extraction of polarimetric SAR data
    Toshifumi, MA
    Yamaguchi, Y
    Uratsuka, S
    Umehara, T
    Maeno, H
    Satake, M
    Nadai, A
    Nakamura, K
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2005, E88B (06) : 2353 - 2361
  • [25] Signal Models for Changes in Polarimetric SAR Data
    Marino, Armando
    Nannini, Matteo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Multi frequency polarimetric SAR data classification
    Ferro-Famil, L
    Pottier, E
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 2001, 56 (9-10): : 510 - 522
  • [27] Iterative Bilateral Filtering of Polarimetric SAR Data
    D'Hondt, Olivier
    Guillaso, Stephane
    Hellwich, Olaf
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1628 - 1639
  • [28] Modified Three-Component Decomposition Method for Polarimetric SAR Data
    Jiao, Zhihao
    Yang, Jian
    Yeh, Chunmao
    Song, Jianshe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 200 - 204
  • [29] Scattering mechanism identification based on the rotation and eccentric angles of polarimetric SAR data
    Qong, M
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3054 - 3057
  • [30] CP-IRGS: A Region-Based Segmentation of Multilook Complex Compact Polarimetric SAR Data
    Ghanbari, Mohsen
    Clausi, David A.
    Xu, Linlin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6559 - 6571