Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries

被引:41
作者
Zhang, Dapeng [1 ]
Yang, Zengxu [1 ]
Zhang, Junshu [1 ]
Mao, Hongzhi [1 ]
Yang, Jian [1 ]
Qian, Yitai [1 ,2 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, State Educ Minist, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
关键词
Prussian blue; Carbon nanotubes; Nanostructures; Cathode; Rechargeable aqueous batteries; PRUSSIAN BLUE; SUPERIOR CATHODE; INTERCALATION CHEMISTRY; ELECTRODE MATERIALS; HIGH-VOLTAGE; SODIUM; PERFORMANCE; WATER; SUPERCAPACITORS; NANOPARTICLES;
D O I
10.1016/j.jpowsour.2018.07.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prussian blue (PB) and its analogues (PBAs) have been regarded as one of promising electrode candidates in aqueous batteries, due to its open framework, robust skeleton, and simple preparation protocol. However, intrinsic structure vacancies and poor electron conductivity lower their electrochemical performances, particularly in terms of reversible capacity, rate capability, and cycling stability. Here, truncated cobalt hexacyano-ferrate nanocubes threaded by carbon nanotubes are synthesized with the assistances of citrate and glycerol. The low content of structure vacancies in cobalt hexacyanoferrate, and the intimate contact between it and carbon nanotubes, well address the above issues, resulting in excellent performances in rechargeable aqueous batteries. The reversible capacity reaches 107.2 mAh g(-1) at 0.1 A g(-1), 87.3% of which is kept at 5 A g(-1). After paired with Zn foil as a dual-ion full cell, it delivers a high energy of 107.1 Wh kg(cathode)(-1) at 7.87 kW kg(cathode)(-1), exhibiting the high energy and high power simultaneously. All these results indicate the promising potential of this composite in rechargeable aqueous batteries.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Design of pyrite/carbon nanospheres as high-capacity cathode for lithium-ion batteries
    Xiong, Qinqin
    Teng, Xiaojing
    Lou, Jingjing
    Pan, Guoxiang
    Xia, Xinhui
    Chi, Hongzhong
    Lu, Xiaoxiao
    Yang, Tao
    Ji, Zhenguo
    JOURNAL OF ENERGY CHEMISTRY, 2020, 40 : 1 - 6
  • [22] Sepiolite-sulfur as a high-capacity, high-rate performance, and low-cost cathode material for lithium sulfur batteries
    Pan, Junan
    Wu, Cheng
    Cheng, Juanjuan
    Pan, Yong
    Ma, Zengsheng
    Xie, Shuhong
    Li, Jiangyu
    JOURNAL OF POWER SOURCES, 2015, 293 : 527 - 532
  • [23] High-capacity dilithium hydroquinone cathode material for lithium-ion batteries
    Lu, Yong
    Han, Haoqin
    Yang, Zhuo
    Ni, Youxuan
    Meng, Zhicheng
    Zhang, Qiu
    Wu, Hao
    Xie, Weiwei
    Yan, Zhenhua
    Chen, Jun
    NATIONAL SCIENCE REVIEW, 2024, 11 (06)
  • [24] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Li, Shiyou
    Fu, Xiaolan
    Liang, Youwei
    Xie, Jing
    Wei, Yuan
    Yang, Li
    Han, Yamin
    Li, Wenbo
    Cui, Xiaoling
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (07) : 5376 - 5384
  • [25] Non-aqueous calcium-based dual-ion batteries with an organic electrode of high-rate performance
    Jao, Wen-Yang
    Tai, Chen-Wei
    Chang, Chia-Chin
    Hu, Chi-Chang
    ENERGY STORAGE MATERIALS, 2023, 63
  • [26] Nano LiMnBO3, a high-capacity cathode material for Li-ion batteries
    Afyon, Semih
    Kundu, Dipan
    Krumeich, Frank
    Nesper, Reinhard
    JOURNAL OF POWER SOURCES, 2013, 224 : 145 - 151
  • [27] Porous Fe2O3 Modified by Nitrogen-Doped Carbon Quantum Dots/Reduced Graphene Oxide Composite Aerogel as a High-Capacity and High-Rate Anode Material for Alkaline Aqueous Batteries
    Yun, Xiaoru
    Li, Jingying
    Chen, Xianhong
    Chen, Han
    Xiao, Li
    Xiang, Kaixiong
    Chen, Wenhao
    Liao, Haiyang
    Zhu, Yirong
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36970 - 36984
  • [28] Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage
    Zhang, Dapeng
    Zhang, Junshu
    Yang, Zengxu
    Ren, Xiaochuan
    Mao, Hongzhi
    Yang, Xianfeng
    Yang, Jian
    Qian, Yitai
    CHEMICAL COMMUNICATIONS, 2017, 53 (76) : 10556 - 10559
  • [29] High-Capacity, High-Rate Bi-Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries
    Zhao, Yubao
    Manthiram, Arumugam
    CHEMISTRY OF MATERIALS, 2015, 27 (08) : 3096 - 3101
  • [30] High-Capacity Calcium Vanadate Composite with Long-Term Cyclability as a Cathode Material for Aqueous Zinc-Ion Batteries
    Narsimulu, Daulatabad
    Shanthappa, Ragammanavara
    Bandi, Hari
    Yu, Jae Su
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (34) : 12571 - 12582