Feynman Path Integral Inspired Computational Methods for Nonlinear Filtering

被引:1
作者
Balaji, Bhashyam [1 ]
机构
[1] Def Res & Dev Canada, Radar Syst Sect, Ottawa, ON K1A 0Z4, Canada
来源
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIX | 2010年 / 7697卷
关键词
Feynman path integrals; Continuous-Discrete Filtering; Kolmogorov equation; Fokker-Planck equation;
D O I
10.1117/12.849698
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fundamental solution for the continuous-time filtering problems can be expressed in terms of Feynman path integrals. This enables one to view the solution of filtering problem in terms of an effective action that is a function of the signal and measurement models. The practical utility of the path integral formula is demonstrated via some nontrivial examples. Specifically, it is shown that the simplest approximation of the path integral formula for the fundamental solution of the Fokker-Planck-Kolmogorov forward equation (termed the Dirac-Feynman approximation) can be applied to solve nonlinear continuous-discrete filtering problems quite accurately using sparse grid filtering and Monte-Carlo approaches.
引用
收藏
页数:12
相关论文
共 20 条
[1]   FUNCTIONAL-INTEGRALS FOR PARABOLIC DIFFERENTIAL-EQUATIONS [J].
ALICKI, R ;
MAKOWIEC, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17) :3319-3325
[2]  
[Anonymous], 2005, Dover Books on Engineering
[3]  
[Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[4]  
[Anonymous], 1999, Fields
[5]  
Balaji B., 2008, IEEE RAD C ROM IT MA
[6]  
BALAJI B, 2009, PMC PHYS A 0210
[7]  
BALAJI B, 2009, 2008343 TM DRDC
[8]  
BALAJI B, 2010, SPIE, V7397
[9]  
BALAJI B, 2006, IEEE T AERO IN PRESS
[10]  
Balaji B, 2008, IEEE RAD CONF, P1317