Satellite-to-ground quantum key distribution

被引:1130
作者
Liao, Sheng-Kai [1 ,2 ,3 ]
Cai, Wen-Qi [1 ,2 ,3 ]
Liu, Wei-Yue [1 ,2 ,3 ]
Zhang, Liang [3 ,4 ]
Li, Yang [1 ,2 ,3 ]
Ren, Ji-Gang [1 ,2 ,3 ]
Yin, Juan [1 ,2 ,3 ]
Shen, Qi [1 ,2 ,3 ]
Cao, Yuan [1 ,2 ,3 ]
Li, Zheng-Ping [1 ,2 ,3 ]
Li, Feng-Zhi [1 ,2 ,3 ]
Chen, Xia-Wei [1 ,2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Jia, Jian-Jun [4 ]
Wu, Jin-Cai [4 ]
Jiang, Xiao-Jun [5 ]
Wang, Jian-Feng [5 ]
Huang, Yong-Mei [6 ]
Wang, Qiang [6 ]
Zhou, Yi-Lin [7 ]
Deng, Lei [7 ]
Xi, Tao [8 ]
Ma, Lu [9 ]
Hu, Tai [10 ]
Zhang, Qiang [1 ,2 ,3 ]
Chen, Yu-Ao [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Wang, Xiang-Bin [3 ]
Zhu, Zhen-Cai [6 ,7 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Shu, Rong [3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
Wang, Jian-Yu [3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS, Ctr Excellence & Synerget Innovat, Ctr Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200083, Peoples R China
[5] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[6] Chinese Acad Sci, Inst Opt & Elect, Key Lab Opt Engn, Chengdu 610209, Sichuan, Peoples R China
[7] Shanghai Engn Ctr Microsatellites, Shanghai 201203, Peoples R China
[8] Xian Satellite Control Ctr, State Key Lab Astronaut Dynam, Xian 710061, Shaanxi, Peoples R China
[9] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[10] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT DISTRIBUTION; ATOMIC ENSEMBLES; COMMUNICATION; TELEPORTATION; PURIFICATION; REPEATERS;
D O I
10.1038/nature23655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
引用
收藏
页码:43 / +
页数:17
相关论文
共 50 条
  • [41] Satellite-to-ground optical downlink model using mode mismatching multi-mode photonic lanterns
    Guo, Wenjie
    Li, Yan
    Chen, Junjie
    Jin, Tiecheng
    Jiao, Suping
    Wu, Jian
    Qiu, Jifang
    Guo, Hongxiang
    OPTICS EXPRESS, 2023, 31 (21) : 35041 - 35053
  • [42] Practical figures of merit and thresholds for entanglement distribution in quantum networks
    Khatri, Sumeet
    Matyas, Corey T.
    Siddiqui, Aliza U.
    Dowling, Jonathan P.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):
  • [43] Secure quantum key distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Tamaki, Kiyoshi
    NATURE PHOTONICS, 2014, 8 (08) : 595 - 604
  • [44] Turbulence spectrum model and fiber-coupling efficiency in the anisotropic non-Kolmogorov satellite-to-ground downlink
    Zhai, Chao
    RESULTS IN PHYSICS, 2021, 29
  • [45] Multicore fiber beacon system for reducing back-reflection in satellite quantum key distribution
    Simmons, Cameron
    Donaldson, Ross
    OPTICS EXPRESS, 2023, 31 (14) : 23382 - 23392
  • [46] Assessment of Practical Satellite Quantum Key Distribution Architectures for Current and Near-Future Missions
    Orsucci, Davide
    Kleinpass, Philipp
    Meister, Jaspar
    De Marco, Innocenzo
    Haeusler, Stefanie
    Strang, Thomas
    Walenta, Nino
    Moll, Florian
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2025,
  • [47] Secret key rates for an encoded quantum repeater
    Bratzik, Sylvia
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [48] Universal Limitations on Quantum Key Distribution over a Network
    Das, Siddhartha
    Bauml, Stefan
    Winczewski, Marek
    Horodecki, Karol
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [49] The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet
    Cao, Yuan
    Zhao, Yongli
    Wang, Qin
    Zhang, Jie
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (02): : 839 - 894
  • [50] Simple security proof of twin-field type quantum key distribution protocol
    Curty, Marcos
    Azuma, Koji
    Lo, Hoi-Kwong
    NPJ QUANTUM INFORMATION, 2019, 5 (1)