Satellite-to-ground quantum key distribution

被引:1121
|
作者
Liao, Sheng-Kai [1 ,2 ,3 ]
Cai, Wen-Qi [1 ,2 ,3 ]
Liu, Wei-Yue [1 ,2 ,3 ]
Zhang, Liang [3 ,4 ]
Li, Yang [1 ,2 ,3 ]
Ren, Ji-Gang [1 ,2 ,3 ]
Yin, Juan [1 ,2 ,3 ]
Shen, Qi [1 ,2 ,3 ]
Cao, Yuan [1 ,2 ,3 ]
Li, Zheng-Ping [1 ,2 ,3 ]
Li, Feng-Zhi [1 ,2 ,3 ]
Chen, Xia-Wei [1 ,2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Jia, Jian-Jun [4 ]
Wu, Jin-Cai [4 ]
Jiang, Xiao-Jun [5 ]
Wang, Jian-Feng [5 ]
Huang, Yong-Mei [6 ]
Wang, Qiang [6 ]
Zhou, Yi-Lin [7 ]
Deng, Lei [7 ]
Xi, Tao [8 ]
Ma, Lu [9 ]
Hu, Tai [10 ]
Zhang, Qiang [1 ,2 ,3 ]
Chen, Yu-Ao [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Wang, Xiang-Bin [3 ]
Zhu, Zhen-Cai [6 ,7 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Shu, Rong [3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
Wang, Jian-Yu [3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS, Ctr Excellence & Synerget Innovat, Ctr Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200083, Peoples R China
[5] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[6] Chinese Acad Sci, Inst Opt & Elect, Key Lab Opt Engn, Chengdu 610209, Sichuan, Peoples R China
[7] Shanghai Engn Ctr Microsatellites, Shanghai 201203, Peoples R China
[8] Xian Satellite Control Ctr, State Key Lab Astronaut Dynam, Xian 710061, Shaanxi, Peoples R China
[9] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[10] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT DISTRIBUTION; ATOMIC ENSEMBLES; COMMUNICATION; TELEPORTATION; PURIFICATION; REPEATERS;
D O I
10.1038/nature23655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
引用
收藏
页码:43 / +
页数:17
相关论文
共 50 条
  • [21] Large scale quantum key distribution: challenges and solutions
    Zhang, Qiang
    Xu, Feihu
    Chen, Yu-Ao
    Peng, Cheng-Zhi
    Pan, Jian-Wei
    OPTICS EXPRESS, 2018, 26 (18): : 24260 - 24273
  • [22] Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks
    Takenaka, Hideki
    Toyoshima, Morio
    Takayama, Yoshihisa
    OPTICS EXPRESS, 2012, 20 (14): : 15301 - 15308
  • [23] Quantum repeaters and quantum key distribution: Analysis of secret-key rates
    Abruzzo, Silvestre
    Bratzik, Sylvia
    Bernardes, Nadja K.
    Kampermann, Hermann
    van Loock, Peter
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2013, 87 (05)
  • [24] A Novel Resource-Efficient Privacy Amplification Scheme: Towards Ground-Satellite Quantum Key Distribution Post-processing
    Zhang, Zhenning
    Wu, Chunqing
    Zhao, Baokang
    Liu, Bo
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2014, 2014, 8491 : 336 - 346
  • [25] Implementation Security in Quantum Key Distribution
    Zapatero, Victor
    Navarrete, lvaro
    Curty, Marcos
    ADVANCED QUANTUM TECHNOLOGIES, 2025, 8 (02)
  • [26] Quantum Key Distribution in Large Scale Quantum Network Assisted by Classical Routing Information
    Wu, Diance
    Yu, Wanrong
    Zhao, Baokang
    Wu, Chunqing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (10) : 3503 - 3511
  • [27] Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate
    Bratzik, Sylvia
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [28] Ground-to-satellite quantum teleportation
    Ren, Ji-Gang
    Xu, Ping
    Yong, Hai-Lin
    Zhang, Liang
    Liao, Sheng-Kai
    Yin, Juan
    Liu, Wei-Yue
    Cai, Wen-Qi
    Yang, Meng
    Li, Li
    Yang, Kui-Xing
    Han, Xuan
    Yao, Yong-Qiang
    Li, Ji
    Wu, Hai-Yan
    Wan, Song
    Liu, Lei
    Liu, Ding-Quan
    Kuang, Yao-Wu
    He, Zhi-Ping
    Shang, Peng
    Guo, Cheng
    Zheng, Ru-Hua
    Tian, Kai
    Zhu, Zhen-Cai
    Liu, Nai-Le
    Lu, Chao-Yang
    Shu, Rong
    Chen, Yu-Ao
    Peng, Cheng-Zhi
    Wang, Jian-Yu
    Pan, Jian-Wei
    NATURE, 2017, 549 (7670) : 70 - +
  • [29] A Markov-Based Satellite-to-Ground Optical Channel Model and Its Effective Coding Scheme
    Yamashita, Yoshitoshi
    Okamoto, Eiji
    Iwanami, Yasunori
    Shoji, Yozo
    Toyoshima, Morio
    Takayama, Yoshihisa
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2012, E95B (01) : 254 - 262
  • [30] Measurement-device-independent quantum key distribution for nonstandalone networks
    Fan-Yuan, Guan-Jie
    Lu, Feng-Yu
    Wang, Shuang
    Yin, Zhen-Qiang
    He, De-Yong
    Zhou, Zheng
    Teng, Jun
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    PHOTONICS RESEARCH, 2021, 9 (10) : 1881 - 1891