Satellite-to-ground quantum key distribution

被引:1121
|
作者
Liao, Sheng-Kai [1 ,2 ,3 ]
Cai, Wen-Qi [1 ,2 ,3 ]
Liu, Wei-Yue [1 ,2 ,3 ]
Zhang, Liang [3 ,4 ]
Li, Yang [1 ,2 ,3 ]
Ren, Ji-Gang [1 ,2 ,3 ]
Yin, Juan [1 ,2 ,3 ]
Shen, Qi [1 ,2 ,3 ]
Cao, Yuan [1 ,2 ,3 ]
Li, Zheng-Ping [1 ,2 ,3 ]
Li, Feng-Zhi [1 ,2 ,3 ]
Chen, Xia-Wei [1 ,2 ,3 ]
Sun, Li-Hua [1 ,2 ,3 ]
Jia, Jian-Jun [4 ]
Wu, Jin-Cai [4 ]
Jiang, Xiao-Jun [5 ]
Wang, Jian-Feng [5 ]
Huang, Yong-Mei [6 ]
Wang, Qiang [6 ]
Zhou, Yi-Lin [7 ]
Deng, Lei [7 ]
Xi, Tao [8 ]
Ma, Lu [9 ]
Hu, Tai [10 ]
Zhang, Qiang [1 ,2 ,3 ]
Chen, Yu-Ao [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Wang, Xiang-Bin [3 ]
Zhu, Zhen-Cai [6 ,7 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Shu, Rong [3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
Wang, Jian-Yu [3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS, Ctr Excellence & Synerget Innovat, Ctr Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200083, Peoples R China
[5] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[6] Chinese Acad Sci, Inst Opt & Elect, Key Lab Opt Engn, Chengdu 610209, Sichuan, Peoples R China
[7] Shanghai Engn Ctr Microsatellites, Shanghai 201203, Peoples R China
[8] Xian Satellite Control Ctr, State Key Lab Astronaut Dynam, Xian 710061, Shaanxi, Peoples R China
[9] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[10] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT DISTRIBUTION; ATOMIC ENSEMBLES; COMMUNICATION; TELEPORTATION; PURIFICATION; REPEATERS;
D O I
10.1038/nature23655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
引用
收藏
页码:43 / +
页数:17
相关论文
共 50 条
  • [1] Feasibility of satellite-to-ground continuous-variable quantum key distribution
    Dequal, Daniele
    Vidarte, Luis Trigo
    Rodriguez, Victor Roman
    Vallone, Giuseppe
    Villoresi, Paolo
    Leverrier, Anthony
    Diamanti, Eleni
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
    Zhou, Chun
    Zhao, Yan-Mei
    Yang, Xiao-Liang
    Lu, Yi-Fei
    Zhou, Yu
    Jiang, Xiao-Lei
    Wang, Hai-Tao
    Wang, Yang
    Li, Jia-Ji
    Jiang, Mu-Sheng
    Wan, Xiang
    Zhang, Hai-Long
    Li, Hong-Wei
    Bao, Wan-Su
    CHINESE PHYSICS B, 2024, 33 (08)
  • [3] Semi-Empirical Satellite-to-Ground Quantum Key Distribution Model for Realistic Receivers
    Khmelev, Aleksandr V.
    Ivchenko, Egor I.
    Miller, Alexander V.
    Duplinsky, Alexey V.
    Kurochkin, Vladimir L.
    Kurochkin, Yury V.
    ENTROPY, 2023, 25 (04)
  • [4] Prediction and experimental verification for satellite-to-ground quantum communication key rate based on machine learning
    Gong Yun-Hong
    Fu Hao-Bin
    Yong Hai-Lin
    Cao Yuan
    Ren Ji-Gang
    Peng Cheng-Zhi
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2021, 40 (03) : 420 - 425
  • [5] Quantum communication for satellite-to-ground networks with partially entangled states
    Chen Na
    Quan Dong-Xiao
    Pei Chang-Xing
    Yang-Hong
    CHINESE PHYSICS B, 2015, 24 (02)
  • [6] General model on polarization compensation in satellite-to-ground quantum communication
    Li, Ming
    Lu, Pengfei
    Yu, Zhongyuan
    Liu, Yumin
    Zhang, Lidong
    Yang, Chuanghua
    OPTICAL ENGINEERING, 2013, 52 (04)
  • [7] Progress in satellite quantum key distribution
    Bedington, Robert
    Arrazola, Juan Miguel
    Ling, Alexander
    NPJ QUANTUM INFORMATION, 2017, 3
  • [8] Adaptive optics benefit for quantum key distribution uplink from ground to a satellite
    Pugh, Christopher J.
    Lavigne, Jean-Francois
    Bourgoin, Jean-Philippe
    Higgins, Brendon L.
    Jennewein, Thomas
    ADVANCED OPTICAL TECHNOLOGIES, 2020, 9 (05) : 263 - 273
  • [9] Feasibility of satellite quantum key distribution
    Bonato, C.
    Tomaello, A.
    Da Deppo, V.
    Naletto, G.
    Villoresi, P.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [10] Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution
    Wang ChaoZe
    Guo Hui
    Ren JiGang
    Cao Yuan
    Peng ChengZhi
    Liu WeiYue
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (07) : 1233 - 1237