Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor

被引:191
|
作者
Abobeih, M. H. [1 ,2 ]
Randall, J. [1 ,2 ]
Bradley, C. E. [1 ,2 ]
Bartling, H. P. [1 ,2 ]
Bakker, M. A. [1 ,2 ]
Degen, M. J. [1 ,2 ]
Markham, M. [3 ]
Twitchen, D. J. [3 ]
Taminiau, T. H. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci Delft, Delft, Netherlands
[3] Element Six, Didcot, Oxon, England
关键词
MAGNETIC-RESONANCE-SPECTROSCOPY; NITROGEN-VACANCY SPIN;
D O I
10.1038/s41586-019-1834-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins(1). Whereas conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors(2-9) has created the prospect of magnetic imaging of individual molecules(10-13). As an initial step towards this goal, isolated nuclear spins and spin pairs have been mapped(14-21). However, large clusters of interacting spins-such as those found in molecules-result in highly complex spectra. Imaging these complex systems is challenging because it requires high spectral resolution and efficient spatial reconstruction with sub-angstrom precision. Here we realize such atomic-scale imaging using a single nitrogen vacancy centre as a quantum sensor, and demonstrate it on a model system of 27 coupled C-13 nuclear spins in diamond. We present a multidimensional spectroscopy method that isolates individual nuclear-nuclear spin interactions with high spectral resolution (less than 80 millihertz) and high accuracy (2 millihertz). We show that these interactions encode the composition and inter-connectivity of the cluster, and develop methods to extract the three-dimensional structure of the cluster with sub-angstrom resolution. Our results demonstrate a key capability towards magnetic imaging of individual molecules and other complex spin systems(9-13).
引用
收藏
页码:411 / +
页数:13
相关论文
共 50 条
  • [21] Atomic-scale imaging of polyvinyl alcohol crystallinity using electron ptychography
    Hao, Botao
    Ding, Zhiyuan
    Tao, Xudong
    Nellist, Peter D.
    Assender, Hazel E.
    POLYMER, 2023, 284
  • [22] Atomic-scale imaging of ultrafast materials dynamics
    Flannigan, David J.
    Lindenberg, Aaron M.
    MRS BULLETIN, 2018, 43 (07) : 485 - 490
  • [23] Atomic-scale imaging of carbon nanofibre growth
    Stig Helveg
    Carlos López-Cartes
    Jens Sehested
    Poul L. Hansen
    Bjerne S. Clausen
    Jens R. Rostrup-Nielsen
    Frank Abild-Pedersen
    Jens K. Nørskov
    Nature, 2004, 427 : 426 - 429
  • [24] Atomic-scale imaging of ultrafast materials dynamics
    David J. Flannigan
    Aaron M. Lindenberg
    MRS Bulletin, 2018, 43 : 485 - 490
  • [25] Direct atomic-scale imaging of ceramic interfaces
    Dickey, E.C.
    Fan, X.
    Pennycook, S.J.
    Acta Materialia, 1999, 47 (15): : 4061 - 4068
  • [26] Atomic-scale spin-polarization maps using functionalized superconducting probes
    Schneider, Lucas
    Beck, Philip
    Wiebe, Jens
    Wiesendanger, Roland
    SCIENCE ADVANCES, 2021, 7 (04):
  • [27] Remote detection and recording of atomic-scale spin dynamics
    R. J. G. Elbertse
    D. Coffey
    J. Gobeil
    A. F. Otte
    Communications Physics, 3
  • [28] Remote detection and recording of atomic-scale spin dynamics
    Elbertse, R. J. G.
    Coffey, D.
    Gobeil, J.
    Otte, A. F.
    COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [29] Imaging the atomic-scale structure of vanadia powder surface using ambient atomic force microscopy
    Mathieu, C
    Peralta, S
    Da Costa, A
    Barbaux, Y
    SURFACE SCIENCE, 1998, 395 (01) : L201 - L206
  • [30] The imaging mechanism of atomic-scale Kelvin probe force microscopy and its application to atomic-scale force mapping
    Okamoto, K
    Sugawara, Y
    Morita, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (11): : 7163 - 7168