Perfect information stochastic priority games

被引:0
作者
Gimbert, Hugo [1 ]
Zielonka, Wieslaw [2 ,3 ]
机构
[1] Ecole Polytech, LIX, Palaiseau, France
[2] Univ Paris 07, LIAFA, Paris, France
[3] CNRS, Paris, France
来源
AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS | 2007年 / 4596卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games [1] and parity games [2] are special extreme cases of priority games.
引用
收藏
页码:850 / +
页数:2
相关论文
共 15 条
[1]  
[Anonymous], 1991, FOCS, DOI DOI 10.1109/SFCS.1991.185392
[2]   DISCRETE DYNAMIC-PROGRAMMING [J].
BLACKWELL, D .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02) :719-&
[3]  
CHATTERJEE K, 2004, P 15 ANN S DISCR ALG, P114
[4]   Quantitative solution of omega-regular games [J].
de Alfaro, L ;
Majumdar, R .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 68 (02) :374-397
[5]  
de Alfaro L, 2003, LECT NOTES COMPUT SC, V2719, P1022
[6]  
De Alfaro L., 1997, PhD thesis
[7]  
Filar J., 1997, COMPETITIVE MARKOV D
[8]  
Gimbert H, 2006, LECT NOTES COMPUT SC, V4052, P312
[9]  
HORDIJK A, 2002, HDB MARKOV DECISION
[10]  
MCIVER A, 2005, ENTCS, V153, P195