A martingale approach to homogenization of unbounded random flows

被引:29
作者
Fannjiang, A [1 ]
Komorowski, T
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
convection-diffusion; invariance principle; homogenization; martingale;
D O I
10.1214/aop/1023481115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behavior of Brownian motion in steady, unbounded incompressible random flows. We prove an invariance principle for almost all realizations of random flows. The key compactness result is obtained by Moser's iterative scheme in PDE theory.
引用
收藏
页码:1872 / 1894
页数:23
相关论文
共 23 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]   AN INTEGRAL-REPRESENTATION AND BOUNDS ON THE EFFECTIVE DIFFUSIVITY IN PASSIVE ADVECTION BY LAMINAR AND TURBULENT FLOWS [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :339-391
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[6]  
Chorin A., 1994, Vorticity and Turbulence
[7]  
CHUNG K. L., 1995, From Brownian Motion to Schrodinger's Equation, V312
[8]  
DEDIK PE, 1982, MATH USSR SB, V41, P33
[9]  
DUNFORD N, 1988, LINEAR OPERATORS, V1
[10]   Diffusion in turbulence [J].
Fannjiang, A ;
Papanicolaou, G .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 105 (03) :279-334