Non-reciprocal wave propagation in modulated elastic metamaterials

被引:134
作者
Nassar, H. [1 ]
Chen, H. [1 ]
Norris, A. N. [2 ]
Haberman, M. R. [3 ,4 ]
Huang, G. L. [1 ]
机构
[1] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
[2] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
[3] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[4] Univ Texas Austin, Appl Res Labs, Austin, TX 78712 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2202期
基金
美国国家科学基金会;
关键词
non-reciprocity; pump wave; one-way transition; unidirectional bandgap;
D O I
10.1098/rspa.2017.0188
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are demonstrated analytically through an asymptotic analysis based on coupled mode theory and numerically thanks to a series of simulations in harmonic and transient regimes. High-amplitude modulations are then explored in the homogenization limit where a non-standard effective mass operator is recovered and shown to take negative values over unusually large frequency bands. These modulated metamaterials, which exhibit either non-reciprocal behaviours or non-standard effective mass operators, offer promise for applications in the field of elastic wave control in general and in one-way conversion/amplification in particular.
引用
收藏
页数:22
相关论文
共 39 条
  • [1] [Anonymous], 2007, INTRO MATH THEORY DY
  • [2] [Anonymous], 2015, Acoust. Today
  • [3] Long wavelength inner-resonance cut-off frequencies in elastic composite materials
    Auriault, J. -L.
    Boutin, C.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (23-24) : 3269 - 3281
  • [4] AURIAULT JL, 1985, ARCH MECH, V37, P269
  • [5] Brillouin L., 1953, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, V2
  • [6] Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
    Casadei, Filippo
    Delpero, Tommaso
    Bergamini, Andrea
    Ermanni, Paolo
    Ruzzene, Massimo
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
  • [7] DISPERSION RELATIONS IN TIME-SPACE PERIODIC MEDIA .1. STABLE INTERACTIONS
    CASSEDY, ES
    OLINER, AA
    [J]. PROCEEDINGS OF THE IEEE, 1963, 51 (10) : 1342 - &
  • [8] An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves
    Chen, Y. Y.
    Hu, G. K.
    Huang, G. L.
    [J]. SMART MATERIALS AND STRUCTURES, 2016, 25 (10)
  • [9] Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
    Chen, Y. Y.
    Huang, G. L.
    Sun, C. T.
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (06):
  • [10] Tunable Topological Phononic Crystals
    Chen, Ze-Guo
    Wu, Ying
    [J]. PHYSICAL REVIEW APPLIED, 2016, 5 (05):