Fabrication of succinic acid-γ-Fe2O3 nano core-shells

被引:23
作者
Jayarathne, L. [3 ]
Ng, W. J. [4 ]
Bandara, A. [2 ]
Vitanage, M. [3 ]
Dissanayake, C. B. [3 ]
Weerasooriya, R. [1 ]
机构
[1] Univ Peradeniya, Fac Agr, Dept Soil Sci, Peradeniya 19000, Sri Lanka
[2] Univ Peradeniya, Dept Chem, Peradeniya 19000, Sri Lanka
[3] Inst Fundamental Studies, Nano Team, Kandy 20000, Sri Lanka
[4] Nanyang Technol Univ, Dept Civil & Environm Engn, Singapore 639798, Singapore
关键词
Succinic acid; Streptomycin; gamma-Fe2O3; Core-shell nano particles; DENSITY-FUNCTIONAL THEORY; IRON-OXIDE NANOPARTICLES; SITU ATR-FTIR; MAGNETITE NANOPARTICLES; SURFACE COMPLEXATION; ADSORPTION; REACTIVITY; HEMATITE; SPECTROSCOPY; EQUILIBRIUM;
D O I
10.1016/j.colsurfa.2012.03.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell nano-structures were synthesized by adsorbing succinic acid on gamma-Fe2O3 nanoparticles (hereafter referred to as core-shell nanoparticles or core-shells). Streptomycin was chosen as a model drug to attach on gamma-Fe2O3 core-shells. Vibration spectroscopic data confirmed the specific adsorption of organic ligands (i.e., succinic acid or streptomycin) onto gamma-Fe2O3 via bi-dentate, bi-nuclear complex. Possible molecular configurations between organic ligands and gamma-Fe2O3 were examined by density functional theory (OFT) using Fe-6(OH)(18)(H2O)(6) ring cluster. The measured vibration frequencies and bond distances (i.e., Fe-O-Fe, Fe-O-w, and Fe-OH units) of the optimized gamma-Fe2O3 cluster matched well with the calculations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 50 条
[31]   Monodisperse α-Fe2o3 nanoplatelets: Synthesis and characterization [J].
Ayachi, Ahmed Abdelhakim ;
Mechakra, Hind ;
Manso Silvan, Miguel ;
Boudjaadar, Smail ;
Achour, Slimane .
CERAMICS INTERNATIONAL, 2015, 41 (02) :2228-2233
[32]   Photocatalytic performance and magnetic separation of TiO2-functionalized γ-Fe2O3, Fe, and Fe/Fe2O3 magnetic particles [J].
Chen, Zheng ;
Ma, Yongqing ;
Geng, Bingqian ;
Wang, Min ;
Sun, Xiao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 700 :113-121
[33]   An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites [J].
Sarkar, Joy ;
Mollick, Md Masud Rahaman ;
Chattopadhyay, Dipankar ;
Acharya, Krishnendu .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2017, 40 (03) :351-359
[34]   Computational insights into interactions between Hg species and α-Fe2O3 (001) [J].
Guo, Pan ;
Guo, Xin ;
Zheng, Chu-guang .
FUEL, 2011, 90 (05) :1840-1846
[35]   Mechanical processing of γ-Fe2O3 [J].
R. V. Lukashev ;
A. F. Alekova ;
S. K. Korchagina ;
F. Kh. Chibirova .
Inorganic Materials, 2015, 51 :134-137
[36]   Reduction of Fe2O3 with hydrogen [J].
Zielinski, Jerzy ;
Zglinicka, Ilona ;
Znak, Leszek ;
Kaszkur, Zbigniew .
APPLIED CATALYSIS A-GENERAL, 2010, 381 (1-2) :191-196
[37]   Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors [J].
Liu, Shan ;
Yao, Ke ;
Fu, Lian-Hua ;
Ma, Ming-Guo .
RSC ADVANCES, 2016, 6 (03) :2135-2140
[38]   Fabrication and comparative study of magnetic Fe and α-Fe2O3 nanoparticles dispersed hybrid polymer (PVA [J].
Hoque, Md Asadul ;
Ahmed, M. R. ;
Rahman, G. T. ;
Rahman, M. T. ;
Islam, M. A. ;
Khan, Mubarak A. ;
Hossain, M. Khalid .
RESULTS IN PHYSICS, 2018, 10 :434-443
[39]   Biomimetic fabrication of α-Fe2O3 with hierarchical structures as H2S Sensor [J].
Wenhong Peng ;
Chengling Zhu ;
Shenmin Zhu ;
Fan Yao ;
Yao Li ;
Di Zhang .
Journal of Materials Science, 2013, 48 :4336-4344
[40]   In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3) [J].
Schimanke, G ;
Martin, M .
SOLID STATE IONICS, 2000, 136 :1235-1240