Grain size determination in nano-scale polycrystalline aggregates by precession illumination-hollow cone dark field imaging in the transmission electron microscope

被引:16
作者
Kulovits, A. K. [1 ]
Facco, G. [1 ]
Wiezorek, J. M. K. [1 ]
机构
[1] Univ Pittsburgh, Swanson Sch Engn, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
关键词
Grain size determination; Nanocrystalline materials; Transmission electron microscopy; TEM; Precession illumination; AB-INITIO DETERMINATION; DIFFRACTION; FILMS;
D O I
10.1016/j.matchar.2011.10.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Precession illumination hollow cone dark field (PI-HCDF) transmission electron microscopy (TEM) provides high contrast multi-beam dark field images, which are suitable for effective and robust grain size measurements in nano-scale polycrystalline aggregates. Precession illumination with slightly converged electron beam probes and precession angles up to 3 degrees has been produced using a computer-controlled system using a JEOL JEM 2000FX TEM instrument. Theoretical and practical aspects of the experimental technique are discussed using example precession illumination hollow cone diffraction patterns from single crystalline NiAl and the importance of selecting the appropriate precession angle for PI-HCDF image formation and interpretation is described. Results obtained for precession illumination are compared with those of conventional parallel beam illumination experiments. Nanocrystalline Al has been used to evaluate the influence of the precession angle on PI-HCDF image contrast with a focus on grain size analysis. PI-HCDF imaging has been applied for grain size measurements in regions of a nanocrystalline Al thin film adjacent to the edge of a pulsed laser melted and rapidly solidified region and determined the dimensions of a heat-affected zone. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 18 条
[1]   Measurement of three-dimensional intensity data in electron diffraction by the precession technique [J].
Berg, BS ;
Hansen, V ;
Midgley, PA ;
Gjonnes, J .
ULTRAMICROSCOPY, 1998, 74 (03) :147-157
[2]   Ab initio determination of heavy oxide perovskite related structures from precession electron diffraction data [J].
Boulahya, Khalid ;
Ruiz-Gonzalez, Luisa ;
Parras, Marina ;
Gonzalez-Calbet, Jose M. ;
Nickolsky, M. S. ;
Nicolopoulos, Stavros .
ULTRAMICROSCOPY, 2007, 107 (6-7) :445-452
[3]  
Cullity B. D., ELEMENTS XRAY DIFFRA
[4]  
DILLE J, 1995, MATER RES SOC SYMP P, V362, P231
[5]   Is precession electron diffraction kinematical? Part II A practical method to determine the optimum precession angle [J].
Eggeman, A. S. ;
White, T. A. ;
Midgley, P. A. .
ULTRAMICROSCOPY, 2010, 110 (07) :771-777
[6]  
Fultz B., 2001, TRANSMISSION ELECT M
[7]  
Goodhew P.G., 2001, ELECT MICROSCOPY ANA
[8]   Rapid lateral solidification of pure Cu and Au thin films encapsulated in SiO2 -: art. no. 201902 [J].
Kline, JE ;
Leonard, JP .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[9]   Suppression of dewetting phenomena during excimer laser melting of thin metal films on SiO2 [J].
Kline, JE ;
Leonard, JP .
THIN SOLID FILMS, 2005, 488 (1-2) :306-313
[10]   Microstructural changes of nanocrystalline nickel during cold rolling [J].
Kulovits, A. ;
Mao, S. X. ;
Wiezorek, J. M. K. .
ACTA MATERIALIA, 2008, 56 (17) :4836-4845