Derivation of a modified Korteweg-de Vries model for few-optical-cycles soliton propagation from a general Hamiltonian

被引:24
作者
Triki, H. [2 ]
Leblond, H. [1 ]
Mihalache, D. [1 ,3 ,4 ]
机构
[1] Univ Angers, LUNAM Univ, Lab Photon Angers, EA 4464, F-49045 Angers 01, France
[2] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, Annaba 23000, Algeria
[3] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Magurele 077125, Romania
[4] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
Few-cycle pulses; Few-cycle solitons; Modified Korteweg-de Vries equation; mKdV equation; VARYING ENVELOPE APPROXIMATION; PULSE-PROPAGATION; ELECTROMAGNETIC PULSES; DISSIPATIVE SOLITONS; NONLINEAR-OPTICS; BREAKDOWN; REGIME; MEDIA; SHOCK;
D O I
10.1016/j.optcom.2012.02.045
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Propagation of few-cycles optical pulses in a centrosymmetric nonlinear optical Kerr (cubic) type material described by a general Hamiltonian of multilevel atoms is considered. Assuming that all transition frequencies of the nonlinear medium are well above the typical wave frequency, we use a long-wave approximation to derive an approximate evolution model of modified Korteweg-de Vries type. The model derived by rigorous application of the reductive perturbation formalism allows one the adequate description of propagation of ultrashort (few-cycles long) solitons. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 71 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J].
Aközbek, N ;
Scalora, M ;
Bowden, CM ;
Chin, SL .
OPTICS COMMUNICATIONS, 2001, 191 (3-6) :353-362
[3]   Solitary-wave solutions for few-cycle optical pulses [J].
Amiranashvili, Sh. ;
Vladimirov, A. G. ;
Bandelow, U. .
PHYSICAL REVIEW A, 2008, 77 (06)
[4]  
BELENOV EM, 1990, JETP LETT+, V51, P288
[5]   Few-cycle light bullets created by femtosecond filaments [J].
Berge, L. ;
Skupin, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[6]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[7]   Intense few-cycle laser fields: Frontiers of nonlinear optics [J].
Brabec, T ;
Krausz, F .
REVIEWS OF MODERN PHYSICS, 2000, 72 (02) :545-591
[8]   Nonlinear optical pulse propagation in the single-cycle regime [J].
Brabec, T ;
Krausz, F .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3282-3285
[9]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[10]  
Dodd R. K., 1982, Solitons and Nonlinear Wave Equations