Charge Transport in Weyl Semimetals

被引:405
作者
Hosur, Pavan [1 ]
Parameswaran, S. A. [1 ]
Vishwanath, Ashvin [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA
关键词
Dc conductivity - Kubo conductivity - Leading terms - Noninteracting - Quantum Boltzmann equations - Transport data;
D O I
10.1103/PhysRevLett.108.046602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity sigma(omega, T) by solving a quantum Boltzmann equation within a "leading log'' approximation and find it to be proportional to T, up to logarithmic factors arising from the flow of couplings. In the noninteracting disordered case, we compute the Kubo conductivity and show that it behaves differently for omega << T and omega >> T: in the former regime we recover a previous result, of a finite dc conductivity and a Drude width vanishing as NT2; in the latter, we find that sigma(omega, T) vanishes linearly with sigma(omega, T) with a leading term as T -> 0 equal to the clean, free-fermion result: sigma((N))(0)(omega, T = 0) = N e(2)/12h vertical bar omega vertical bar/nu(F). We compare our results to transport data on Y2Ir2O7 and comment on the possible relevance to recent experiments on Eu2Ir2O7.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] Some Properties of Gapless Semiconductors of the Second Kind
    Abrikosov, A. A.
    Beneslavskii, S. D.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1971, 5 (02) : 141 - 154
  • [2] Aji V., ARXIV11084426
  • [3] Transport coefficients in high temperature gauge theories, 1. Leading-log results
    Arnold, P
    Moore, GD
    Yaffe, LG
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (11):
  • [4] Weyl Semimetal in a Topological Insulator Multilayer
    Burkov, A. A.
    Balents, Leon
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [5] Quantum critical transport in clean graphene
    Fritz, Lars
    Schmalian, Joerg
    Mueller, Markus
    Sachdev, Subir
    [J]. PHYSICAL REVIEW B, 2008, 78 (08):
  • [6] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [7] Quantum Criticality between Topological and Band Insulators in 3+1 Dimensions
    Goswami, Pallab
    Chakravarty, Sudip
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (19)
  • [8] Effect of time-reversal symmetry on energy bands of crystals
    Herring, C
    [J]. PHYSICAL REVIEW, 1937, 52 (04): : 0361 - 0365
  • [9] Conductivity of defectless graphene
    Kashuba, Alexander B.
    [J]. PHYSICAL REVIEW B, 2008, 78 (08):
  • [10] Krempa W. Witczak-, ARXIV11056108, P6108