Visible-Light-Responsive Sillen-Structured Mixed-Cationic CdBiO2Br Nanosheets: Layer Structure Design Promoting Charge Separation and Oxygen Activation Reactions

被引:68
作者
Huang, Hongwei [1 ,2 ]
Reshak, Ali H. [3 ]
Auluck, Sushil [4 ]
Jin, Shifeng [5 ]
Tian, Na [1 ]
Guo, Yuxi [1 ]
Zhang, Yihe [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Beijing 100083, Peoples R China
[2] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[3] Univ West Bohemia, New Technol Res Ctr, Univ 8, Plzen 30614, Czech Republic
[4] CSIR, Natl Phys Lab, Dr KS Krishnan Marg, New Delhi 110012, India
[5] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
P-N-JUNCTION; 001 ACTIVE FACETS; PHOTOCATALYTIC ACTIVITY; 2ND-HARMONIC GENERATION; CONTROLLABLE SYNTHESIS; OXYCHLORIDE; MECHANISM; HETEROSTRUCTURE; DEGRADATION; ADSORPTION;
D O I
10.1021/acs.jpcc.7b08661
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploration for new layered-structured materials is of significance in multiple fields, e.g., catalysis, energy storage, and conversion, etc. In this work, we develop a visible-light-responsive Sillen-structured mixed-cationic layered catalyst CdBiO2Br based on the typical Sillen-structured BiOBr, and first propose layer structure design as a novel tactic for promoting charge separation and oxygen activation reactions. Differing from BiOBr characterized by [Bi2O2](2+) layer and interleaved Br- double slabs, the crystal structure of CdBiO2Br comprises the [CdBiO2](+) layer and interbedded single Br- slice, rendering a narrowed interlayer spacing from 8.11 to 6.23 angstrom. The largely reduced interlayer distance drastically shortens the diffusion paths of photogenerated electrons (e(-)) and holes (h(+)) in CdBiO2Br, allowing favorable migration of carriers from bulk to the surface of the catalysts. Profiting from this structural advantage, CdBiO2Br presents a superior visible-light driven oxygen activation ability in evolution of superoxide radicals (O-center dot(2)-) and hydroxyl radicals ((OH)-O-center dot), with a production rate of similar to 2.4 and 14.1 times that of BiOBr, respectively. DFT calculations unearth that CdBiO2Br has smaller effective masses for both e(-) and h(+) than BiOBr, and meanwhile bears a significant difference in the respective mobility of e(-) and h(+), indicative of efficient mobility and separation of carrier charge. In particular, the h(+) effective mass of CdBiO2Br is merely one-third of that in BiOBr, corresponding well to the far higher (OH)-O-center dot generation rate of CdBiO2Br. Our work not only exposes a visible-light-active layered material for environmental chemistry/biochemistry applications but also discloses the huge potential of crystal structure manipulation in governing the charge transport behavior and photo(electro)chemical properties.
引用
收藏
页码:2661 / 2672
页数:12
相关论文
共 46 条
[1]   New [PbBi2O4][Bi2O2]Cl2 and [PbnBi10-nO13][Bi2O2]nCl4+n Series by Association of Sizable Subunits: Relationship with Arppe's Compound Bi24O31Cl10 and Luminescence Properties [J].
Aliev, A. ;
Olchowka, J. ;
Colmont, M. ;
Capoen, E. ;
Wickleder, C. ;
Mentre, O. .
INORGANIC CHEMISTRY, 2013, 52 (15) :8427-8435
[2]   Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zhu, Yongfa .
ACS CATALYSIS, 2012, 2 (12) :2769-2778
[3]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[4]   Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Dai, Ying .
NANOSCALE, 2014, 6 (04) :2009-2026
[5]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[6]   Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate [J].
Feng, Mei-Ling ;
Sarma, Debajit ;
Qi, Xing-Hui ;
Du, Ke-Zhao ;
Huang, Xiao-Ying ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (38) :12578-12585
[7]   Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting [J].
Fujito, Hironori ;
Kunioku, Hironobu ;
Kato, Daichi ;
Suzuki, Hajime ;
Higashi, Masanobu ;
Kageyama, Hiroshi ;
Abe, Ryu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2082-2085
[8]   Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets [J].
Guan, Meili ;
Xiao, Chong ;
Zhang, Jie ;
Fan, Shaojuan ;
An, Ran ;
Cheng, Qingmei ;
Xie, Junfeng ;
Zhou, Min ;
Ye, Bangjiao ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) :10411-10417
[9]   In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity [J].
Guo, Yuxi ;
Huang, Hongwei ;
He, Ying ;
Tian, Na ;
Zhang, Tierui ;
Chu, Paul K. ;
An, Qi ;
Zhang, Yihe .
NANOSCALE, 2015, 7 (27) :11702-11711
[10]   Fabrication of Multiple Heterojunctions with Tunable Visible-Light-Active Photocatalytic Reactivity in BiOBr-BiOl Full-Range Composites Based on Microstructure Modulation and Band Structures [J].
Huang, Hongwei ;
Han, Xu ;
Li, Xiaowei ;
Wang, Shichao ;
Chu, Paul K. ;
Zhang, Yihe .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) :482-492