ON LARGE LAG SMOOTHING FOR HIDDEN MARKOV MODELS

被引:1
作者
Houssineau, Jeremie [1 ]
Jasra, Ajay [2 ]
Singh, Sumeetpal S. [3 ,4 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[4] Alan Turing Inst, London, England
关键词
smoothing; multilevel Monte Carlo; optimal transport; PARTICLE GIBBS;
D O I
10.1137/18M1198004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the smoothing problem for hidden Markov models. Given a hidden Markov chain {X-n}(n >= 0) and observations {Y-n}(n >= 0), our objective is to compute E[phi(X-0, ..., X-k)vertical bar y(0), ..., y(n)] for some real-valued, integrable functional phi and k fixed, k << n and for some realization (y(0), ..., y(n)) of (Y-0, ..., Y-n). We introduce a novel application of the multilevel Monte Carlo method with a coupling based on the Knothe-Rosenblatt rearrangement. We prove that this method can approximate the aforementioned quantity with a mean square error (MSE) of O(epsilon(2)) for arbitrary epsilon > 0 with a cost of O(epsilon(-2)). This is in contrast to the same direct Monte Carlo method, which requires a cost of O(n epsilon(-2)) for the same MSE. The approach we suggest is, in general, not possible to implement, so the optimal transport methodology of [A. Spantini, D. Bigoni, and Y. Marzouk, T. Mach. Learn. Res., 19 (2018), pp. 2639-2709; M. Parno, T. Moselhy, and Y. Marzouk, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1160-1190] is used, which directly approximates our strategy. We show that our theoretical improvements are achieved, even under approximation, in several numerical examples.
引用
收藏
页码:2812 / 2828
页数:17
相关论文
共 26 条
[1]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[2]  
[Anonymous], 1986, Stochastic systems: Estimation, identification, and adaptive control
[3]  
Boyd J., 2001, Chebyshev and Fourier Spectral Methods, V2nd
[4]   Approximations of the Optimal Importance Density Using Gaussian Particle Flow Importance Sampling [J].
Bunch, Pete ;
Godsill, Simon .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) :748-762
[5]  
CAPPE O, 2005, SPR S STAT, P1, DOI 10.1007/0-387-28982-8
[6]   On particle Gibbs sampling [J].
Chopin, Nicolas ;
Singh, Sumeetpal S. .
BERNOULLI, 2015, 21 (03) :1855-1883
[7]   Particle flow for nonlinear filters with log-homotopy [J].
Daum, Fred ;
Huang, Jim .
SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2008, 2008, 6969
[8]   A BACKWARD PARTICLE INTERPRETATION OF FEYNMAN-KAC FORMULAE [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Singh, Sumeetpal S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (05) :947-975
[9]  
Doucet A., 2011, HDB NONLINEAR FILTER
[10]   On the Kantorovich-Rubinstein theorem [J].
Edwards, D. A. .
EXPOSITIONES MATHEMATICAE, 2011, 29 (04) :387-398