Approximate fixed-rank closures of covering problems

被引:13
作者
Bienstock, D [1 ]
Zuckerberg, M [1 ]
机构
[1] Columbia Univ, Dept IEOR, New York, NY 10027 USA
关键词
D O I
10.1007/s10107-005-0598-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider a 0/1 integer program min{c(T) x : Ax >= b, x epsilon {0, 1}(n)} where A is nonnegative. We show that if the number of minimal covers of Ax >= b is polynomially bounded, then for any epsilon > 0 and any fixed q, there is a polynomially large lift-and-project relaxation whose value is at least (1 - epsilon) times the value of the rank <= q relaxation. A special case of this result is that given by set-covering problems, or, generally, problems where the coefficients in A and b are bounded.
引用
收藏
页码:9 / 27
页数:19
相关论文
共 18 条
[1]   Mixed 0-1 programming by lift-and-project in a branch-and-cut framework [J].
Balas, E ;
Ceria, S ;
Cornuejols, G .
MANAGEMENT SCIENCE, 1996, 42 (09) :1229-1246
[2]  
BIENSTOCK D, IN PRESS SIAM J OPTI
[3]  
Bienstock D., 2004, Discr. Optim, V1, P13, DOI [10.1016/j.disopt.2004.03.002, DOI 10.1016/J.DISOPT.2004.03.002]
[4]  
BIENSTOCK D, 2003, TR200301 COL U
[5]  
BIENSTOCK D, 2002, TR200201 CORC COL U
[6]   On the separation of split cuts and related inequalities [J].
Caprara, A ;
Letchford, AN .
MATHEMATICAL PROGRAMMING, 2003, 94 (2-3) :279-294
[7]  
Cooke M, 2001, CHIM OGGI, V19, P30
[8]  
CORNUEJOLS G, 2002, MATH PROGRAMMING, V93
[9]   On the membership problem for the elementary closure of a polyhedron [J].
Eisenbrand, F .
COMBINATORICA, 1999, 19 (02) :297-300
[10]  
GOEMANS MX, 2000, UNPUB DOES PRIVATE S