In late 1997 under ONR and DARPA funding members of the SAMPSON Marine Team (Naval Surface Warfare Center, Lockheed Martin and General Dynamics Electric Boat) began investigating the benefits of the tab assisted control (TAC) concept for underwater control surfaces. Results of water tunnel tests conducted in 1998 indicated that the addition of a small trailing-edge tab, typically 10% of the mean chord of the entire control surface structure, vastly enhances the versatility of the control surface system. Depending on the orientation of the tab with respect to the primary control surface (flap) this tab may be used to significantly modify lift, reduce torque, and increase maneuvering capabilities. In 1999 a plan was established to actuate the tab with Shape Memory Alloy (SMA) actuators as a first step towards development of a continuously compliant or flexible control surface similar to that demonstrated in the DARPA Smart Vortex Leveraging Tab (SVLT) program. Testing of a SMA-actuated TAC device occurred late summer 2000. This paper presents a summary of these activities as well as current plans to test and evaluate the FlexTAC (Flexible Tab Assisted Control) concept, which replaces the tab with a continuously compliant trailing edge.