Multi-dimensional Hermite polynomials in quantum optics

被引:20
|
作者
Kok, P [1 ]
Braunstein, SL [1 ]
机构
[1] Bangor Univ, Bangor LL57 1UT, Gwynedd, Wales
来源
关键词
D O I
10.1088/0305-4470/34/31/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with photo-detectors and passive interferometry (beamsplitters, polarization rotations, phase-shifters, etc). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of single-photon polarization states can be modelled using this description.
引用
收藏
页码:6185 / 6195
页数:11
相关论文
共 50 条
  • [1] Operational methods: an extension from ordinary monomials to multi-dimensional Hermite polynomials
    Dattoli, G.
    Khan, Subuhi
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (07) : 671 - 677
  • [2] Convolutions and integral equations weighted by multi-dimensional Hermite functions
    Castro, L. P.
    Guerra, R. C.
    Tuan, N. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)
  • [3] Parameterized multi-dimensional data encryption by digital optics
    Yu, LF
    Peng, X
    Cai, LL
    OPTICS COMMUNICATIONS, 2002, 203 (1-2) : 67 - 77
  • [4] Quantum control with multi-dimensional Gaussian quantum invariant
    Simsek, Selwyn
    Mintert, Florian
    QUANTUM, 2021, 5
  • [5] Quantum vision representations and multi-dimensional quantum transforms
    Li, Hai-Sheng
    Song, Shuxiang
    Fan, Ping
    Peng, Huiling
    Xia, Hai-ying
    Liang, Yan
    INFORMATION SCIENCES, 2019, 502 : 42 - 58
  • [6] Multi-dimensional Chebyshev polynomials: a non-conventional approach
    Cesarano, Clemente
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2019, 10 (01): : 1 - 19
  • [7] Orthogonal and pseudo-orthogonal multi-dimensional Appell polynomials
    Pommeret, D
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 117 (2-3) : 285 - 299
  • [8] Binomial theorems related to two-variable Hermite polynomials and its application in quantum optics
    Fan Hong-Yi
    Lou Sen-Yue
    Pan Xiao-Yin
    Da Cheng
    ACTA PHYSICA SINICA, 2014, 63 (11)
  • [9] Nonlinear signal filtering on the basis of multi-dimensional polynomials of splitted functions
    Solov'ev, E.B.
    Izvestiya VUZ: Radioelektronika, 1995, 38 (04): : 31 - 36
  • [10] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
    展德会
    范洪义
    Chinese Physics B, 2014, 23 (12) : 34 - 37