Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays

被引:3
作者
Annamalai, Anguraj [1 ]
Ramkumar, Kasinathan [1 ]
Ravikumar, Kasinathan [1 ]
机构
[1] PSG Coll Arts & Sci, Dept Math, Coimbatore 641014, Tamil Nadu, India
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2022年 / 10卷 / 01期
关键词
Existence; Random impulsive; Hyers-Ulam stability; Integrodifferential equations; DIFFERENTIAL-EQUATIONS; UNIQUENESS;
D O I
10.22034/cmde.2020.32591.1512
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Firstly, we prove the existence of mild solutions to the equations by using Banach fixed point theorem. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.
引用
收藏
页码:191 / 199
页数:9
相关论文
共 19 条
[1]   On stability of stochastic differential equations with random impulses driven by Poisson jumps [J].
Anguraj, A. ;
Ravikumar, K. ;
Nieto, Juan J. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (05) :682-696
[2]   Existence and Stability Results for Random Impulsive Fractional Pantograph Equations [J].
Anguraj, A. ;
Vinodkumar, A. ;
Malar, K. .
FILOMAT, 2016, 30 (14) :3839-3854
[3]  
[Anonymous], 2002, RGMIA MONOGRAPHS
[4]  
Forti G.-L., 1995, AEQUATIONES MATH, V50, P143, DOI [10.1007/BF01831117, DOI 10.1007/BF01831117]
[5]   STABILITY RESULTS OF RANDOM IMPULSIVE SEMILINEAR DIFFERENTIAL EQUATIONS [J].
Gowrisankar, M. ;
Mohankumar, P. ;
Vinodkumar, A. .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1055-1071
[6]   Hyers-Ulam stability of a first order partial differential equation [J].
Lungu, Nicolaie ;
Popa, Dorian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) :86-91
[7]  
Malar K., 2018, GLOBAL J PURE APPL M, V6, P809
[8]  
Mao X., 2007, Stochastic differential equations and their applications, V2nd, DOI DOI 10.1533/9780857099402
[9]  
Ngoc NPN, 2017, DIFFER EQUAT APPL, V9, P183, DOI 10.7153/dea-09-15
[10]   On the stability of functional equations and a problem of Ulam [J].
Rassias, TM .
ACTA APPLICANDAE MATHEMATICAE, 2000, 62 (01) :23-130