Ballistic miniband conduction in a graphene superlattice

被引:126
作者
Lee, Menyoung [1 ,2 ]
Wallbank, John K. [3 ]
Gallagher, Patrick [1 ,2 ]
Watanabe, Kenji
Taniguchi, Takashi [4 ]
Fal'ko, Vladimir, I [3 ,5 ]
Goldhaber-Gordon, David [1 ,2 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[3] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[4] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
DIRAC FERMIONS; ELECTRONS; TRANSPORT; OSCILLATIONS;
D O I
10.1126/science.aaf1095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rational design of long-period artificial lattices yields effects unavailable in simple solids. The moire pattern in highly aligned graphene/hexagonal boron nitride (h-BN) heterostructures is a lateral superlattice with high electron mobility and an unusual electronic dispersion whose miniband edges and saddle points can be reached by electrostatic gating. We investigated the dynamics of electrons in moire minibands by measuring ballistic transport between adjacent local contacts in a magnetic field, known as the transverse electron focusing effect. At low temperatures, we observed caustics of skipping orbits extending over hundreds of superlattice periods, reversals of the cyclotron revolution for successive minibands, and breakdown of cyclotron motion near van Hove singularities. At high temperatures, electron-electron collisions suppress focusing. Probing such miniband conduction properties is a necessity for engineering novel transport behaviors in superlattice devices.
引用
收藏
页码:1526 / +
页数:5
相关论文
共 40 条
[1]   Fermiology of two-dimensional lateral superlattices [J].
Albrecht, C ;
Smet, JH ;
Weiss, D ;
von Klitzing, K ;
Hennig, R ;
Langenbuch, M ;
Suhrke, M ;
Rössler, U ;
Umansky, V ;
Schweizer, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (11) :2234-2237
[2]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[3]   MODE INTERFERENCE EFFECT IN COHERENT ELECTRON FOCUSING [J].
BEENAKKER, CWJ ;
VANHOUTEN, H ;
VANWEES, BJ .
EUROPHYSICS LETTERS, 1988, 7 (04) :359-364
[4]  
Bohr N., 1972, Niels Bohr Collected Works, V1, P276
[5]   2-DIMENSIONAL ELECTRONS IN A LATERAL MAGNETIC SUPERLATTICE [J].
CARMONA, HA ;
GEIM, AK ;
NOGARET, A ;
MAIN, PC ;
FOSTER, TJ ;
HENINI, M ;
BEAUMONT, SP ;
BLAMIRE, MG .
PHYSICAL REVIEW LETTERS, 1995, 74 (15) :3009-3012
[6]   Dirac edges of fractal magnetic minibands in graphene with hexagonal moire superlattices [J].
Chen, Xi ;
Wallbank, J. R. ;
Patel, A. A. ;
Mucha-Kruczynski, M. ;
McCann, E. ;
Fal'ko, V. I. .
PHYSICAL REVIEW B, 2014, 89 (07)
[7]   Skipping and snake orbits of electrons: Singularities and catastrophes [J].
Davies, Nathan ;
Patel, Aavishkar A. ;
Cortijo, Alberto ;
Cheianov, Vadim ;
Guinea, Francisco ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2012, 85 (15)
[8]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[9]   Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy [J].
Decker, Regis ;
Wang, Yang ;
Brar, Victor W. ;
Regan, William ;
Tsai, Hsin-Zon ;
Wu, Qiong ;
Gannett, William ;
Zettl, Alex ;
Crommie, Michael F. .
NANO LETTERS, 2011, 11 (06) :2291-2295
[10]   NEW TRANSPORT PHENOMENON IN A SEMICONDUCTOR SUPERLATTICE [J].
ESAKI, L ;
CHANG, LL .
PHYSICAL REVIEW LETTERS, 1974, 33 (08) :495-498