Exploring materials band structure space with unsupervised machine learning

被引:17
作者
Nunez, Matias [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, Dept Mat Nucl, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
关键词
Unsupervised machine learning; Data mining; Data visualization; Band structure; High throughput materials calculations; Materials informatics; Fermiology; THROUGHPUT; AFLOWLIB.ORG;
D O I
10.1016/j.commatsci.2018.11.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An unsupervised machine learning algorithm is applied for the first time to explore the space of materials electronic band structures. T-student stochastic neighbor embedding (t-SNE), a state of the art algorithm for visualization of high dimensional data, is applied on feature spaces constructed by extracting electronic fingerprints straight from Brillouin zone of the materials. Different spaces are designed and mapped to lower dimensions allowing to analyze and explore this previously uncharted band structure space for thousands of materials at once. In all cases analyzed machine learning was able to learn and cluster the materials depending on the features involved. t-SNE promises to be a extremely useful tool for exploring the materials space.
引用
收藏
页码:117 / 123
页数:7
相关论文
共 31 条
  • [1] Abdelmoula Walid M., 2016, P NAT ACAD SCI, V113
  • [2] [Anonymous], 2018, ARXIV180308823
  • [3] Ashcroft N. W., 1976, Solid State Physics
  • [4] t-SNE Based Visualisation and Clustering of Geological Domain
    Balamurali, Mehala
    Melkumyan, Arman
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 565 - 572
  • [5] The AFLOW standard for high-throughput materials science calculations
    Calderon, Camilo E.
    Plata, Jose J.
    Toher, Cormac
    Oses, Corey
    Levy, Ohad
    Fornari, Marco
    Natan, Amir
    Mehl, Michael J.
    Hart, Gus
    Nardelli, Marco Buongiorno
    Curtarolo, Stefano
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 : 233 - 238
  • [6] Unsupervised machine learning account of magnetic transitions in the Hubbard model
    Ch'ng, Kelvin
    Vazquez, Nick
    Khatami, Ehsan
    [J]. PHYSICAL REVIEW E, 2018, 97 (01)
  • [7] Silhouette Analysis for Human Action Recognition Based on Supervised Temporal t-SNE and Incremental Learning
    Cheng, Jian
    Liu, Haijun
    Wang, Feng
    Li, Hongsheng
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (10) : 3203 - 3217
  • [8] Cox T., 2000, Multidimensional Scaling, V2nd
  • [9] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [10] Day Alexandre G. R., 2018, GLASSY PHASE OPTIMAL