Less can be More: micro-Managing VMs in Amazon EC2

被引:9
作者
Wen, Jiawei [1 ]
Lu, Lei [2 ]
Casale, Giuliano [3 ]
Smirni, Evgenia [1 ]
机构
[1] Coll William & Mary, Williamsburg, VA 23185 USA
[2] VMware Inc, Palo Alto, CA USA
[3] Imperial Coll London, London, England
来源
2015 IEEE 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING | 2015年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CLOUD.2015.50
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Micro instances (t1.micro) are the class of Amazon EC2 virtual machines (VMs) offering the lowest operational costs for applications with short bursts in their CPU requirements. As processing proceeds, EC2 throttles CPU capacity of micro instances in a complex, unpredictable, manner. This paper aims at making micro instances more predictable and efficient to use. First, we present a characterization of EC2 micro instances that evaluates the complex interactions between cost, performance, idleness and CPU throttling. Next, we define adaptive algorithms to manage CPU consumption by learning the workload characteristics at runtime and by injecting idleness to diminish hostlevel throttling. We show that a gradient-hill strategy leads to favorable results. For CPU bound workloads, we observe that a significant portion of jobs (up to 65%) can have end-to-end times that are even four times shorter than those of the more expensive m1.small class. Our algorithms drastically reduce the long tails of job execution times on the micro instances, resulting to favorable comparisons against even small instances.
引用
收藏
页码:317 / 324
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2008, Benchmarking Amazon EC2 for High-Performance Scientific Computing
[2]   The DaCapo benchmarks: Java']Java benchmarking development and analysis [J].
Blackburn, Stephen M. ;
Garner, Robin ;
Hoffmann, Chris ;
Khan, Asjad M. ;
McKinley, Kathryn S. ;
Bentzur, Rotem ;
Diwan, Amer ;
Feinberg, Daniel ;
Frampton, Daniel ;
Guyer, Samuel Z. ;
Hirzel, Martin ;
Hosking, Antony ;
Jump, Maria ;
Lee, Han ;
Moss, J. Eliot B. ;
Phansalkar, Aashish ;
Stefanovic, Darko ;
VanDrunen, Thomas ;
von Dincklage, Daniel ;
Wiedermann, Ben .
ACM SIGPLAN NOTICES, 2006, 41 (10) :169-190
[3]  
Clay B., 2013, P MASCOTS 13 SAN FRA
[4]  
Cook H., 2013, 40 ANN INT S COMP AR, P308
[5]  
Farley B., 2012, Proceedings of the Third ACM Symposium on Cloud Computing - SoCC '12, P1
[6]   Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing [J].
Iosup, Alexandru ;
Ostermann, Simon ;
Yigitbasi, M. Nezih ;
Prodan, Radu ;
Fahringer, Thomas ;
Epema, Dick H. J. .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (06) :931-945
[7]   STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION FUNCTION [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (03) :462-466
[8]  
Kopytov A., 2004, Sysbench: a system performance benchmark
[9]  
Menage Paul., Control Groups Documentation
[10]  
Ming Mao, 2012, 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), P423, DOI 10.1109/CLOUD.2012.103